PHYSICS 590 II: GROUP THEORY AND SYMMETRIES IN PHYSICS
Bhupal Dev
Homework 10
Due: 04/13/17

1. Gell-Mann-Okubo Mass formula: The meson octet $\left(\pi^{ \pm}, \pi^{0}, K^{ \pm}, K^{0}, \bar{K}^{0}, \eta\right)$ is known to populate the adjoint representation 8 of $S U(3)$, given by a traceless tensor Φ_{j}^{i} (with $i, j=1,2,3$) which in the matrix form looks like

$$
\Phi=\frac{1}{\sqrt{2}} \sum_{a=1}^{8} \phi_{a} \lambda_{a}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta & \pi^{+} & K^{+} \tag{1}\\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta & K^{0} \\
K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}} \eta
\end{array}\right)
$$

where λ_{a} 's are the Gell-Mann matrices.
(a) Identify the components ϕ_{a} 's from Eq. (1).
(b) Calculate $\operatorname{Tr}\left(\Phi^{2}\right)$. Given that the mass term in the Lagrangian is $-(1 / 2) \operatorname{Tr}\left(m_{0}^{2} \Phi^{2}\right)$, what can you tell about the masses of the eight mesons with a perfect $S U(3)$ symmetry?
(c) Show that the mass term written above belongs to the representation $\mathbf{2 7} \oplus \mathbf{8} \oplus \mathbf{1}$.
(d) Experimentally, we know that the masses don't follow the relation you got in part (b). So we have to break the $S U(3)$ symmetry, which can be done by either $\mathbf{2 7}$ or $\mathbf{8}$ from part (c). ${ }^{1}$ It turns out that the right answer is $\mathbf{8} .^{2}$ Calculate the breaking term $\operatorname{Tr}\left(\Phi^{2} \lambda_{8}\right)$.
(e) Using the results from part (d), show that after the $S U(3)$-symmetry breaking, we obtain the following relation among the meson masses:

$$
\begin{equation*}
4 m_{K}^{2}=3 m_{\eta}^{2}+m_{\pi}^{2}, \tag{2}
\end{equation*}
$$

famously known as the Gell-Mann-Okubo mass formula (which works well!).
2. Roots of $S U(4)$: Calculate all the root vectors for $S U(4)$ using the $S U(2)$ subalgebra method and verify that the ones derived in class (using the weight method) are indeed the simple roots.

[^0]
[^0]: ${ }^{1}$ Why not 1 ?
 ${ }^{2}$ Trust the intuition of Feynman and Gell-Mann (if you don't know enough about quarks).

