PHYSICS 590 II: GROUP THEORY AND SYMMETRIES IN PHYSICS

Bhupal Dev
Homework 1
Due: 01/26/17

1. Isomorphism of cyclic groups:

(a) Show that $Z_{2} \otimes Z_{4} \neq Z_{8}$, but $Z_{2} \otimes Z_{5}=Z_{10}$.
(b) This is a general phenomenon, i.e. $Z_{p} \otimes Z_{q}$ is isomorphic to $Z_{p \times q}$, as long as p and q are relatively prime. Note that p, q are not necessarily prime numbers themselves. Can you check this explicitly by taking the example of $Z_{3} \otimes Z_{4}$?
2. Hurwitz algebra: This is defined by the norm property, i.e. the norm of the product of any two elements a and a^{\prime} is the product of their norms:

$$
\begin{equation*}
N\left(a a^{\prime}\right)=N(a) N\left(a^{\prime}\right) \tag{1}
\end{equation*}
$$

where the norm is defined in the usual manner, $N(a) \equiv \sqrt{a \bar{a}}$, with \bar{a} being the conjugate of a. Surprisingly, there are only four algebras satisfying Eq. (1). Two of them are very familiar to you: the real numbers \mathbb{R} and the complex numbers \mathbb{C}. Here are the other two: the quaternions \mathbb{Q} with three imaginary units, and the octonions \mathbb{O} with seven imaginary units.
(a) A quaternion q and its conjugate \bar{q} are defined as

$$
\begin{equation*}
q \equiv x_{0}+\sum_{i=1}^{3} e_{i} x_{i}, \quad \bar{q} \equiv x_{0}-\sum_{i=1}^{3} e_{i} x_{i} \tag{2}
\end{equation*}
$$

where x_{0}, x_{i} are real numbers and e_{i} 's are the imaginary units. Show that for any two quaternions q and q^{\prime}, the norm property (1) is satisfied if and only if

$$
\begin{equation*}
e_{i} e_{j}=-\delta_{i j}+\epsilon_{i j k} e_{k} \tag{3}
\end{equation*}
$$

where $\delta_{i j}$ and $\epsilon_{i j k}$ are the usual Kronecker delta and Levi-Civita tensor, respectively. Eq. (3) is sometimes known as Hamilton's rule. Do you see any similarity between the e_{i} 's and the good-old Pauli matrices?
(b) (Bonus question) An octonion o and its conjugate \bar{o} are defined similar to Eq. (2):

$$
\begin{equation*}
o \equiv x_{0}+\sum_{i=1}^{7} e_{i} x_{i}, \quad \bar{o} \equiv x_{0}-\sum_{i=1}^{7} e_{i} x_{i} \tag{4}
\end{equation*}
$$

where x_{0}, x_{i} are real numbers and e_{i} 's are the imaginary units. You can repeat the exercise as above to convince yourself that for any two octonions o and o^{\prime}, the norm property (1) is satisfied if and only if the e_{i} 's satisfy

$$
\begin{equation*}
e_{i} e_{j}=-\delta_{i j}+\psi_{i j k} e_{k} \tag{5}
\end{equation*}
$$

where $\psi_{i j k}$ are the totally antisymmetric octonion structure functions, whose only non-zero elements are $\psi_{123}=\psi_{246}=\psi_{435}=\psi_{651}=\psi_{572}=\psi_{714}=\psi_{367}=1$. Eq. (5) is sometimes known as the Cayley algebra.

We will discuss later (in class) the matrix representations of both quaternions and octonions in terms of $S O(N)$ algebra. This has important physics applications, e.g. in string theory.
3. Cycle structure of the permutation group: Show that the number of elements in a permutation group S_{n} with a given cycle structure is given by

$$
\begin{equation*}
\frac{n!}{\Pi_{j=1}^{k} j^{n_{j}} n_{j}!} \tag{6}
\end{equation*}
$$

where n_{j} is the number of j-cycles in the cycle structure. Remember that $n=$ $\sum_{j=1}^{k} j n_{j}$, where k is the cycle of maximum length in S_{n}. As an example, list all possible cycle structures in S_{5} and count the number of elements with each structure using Eq. (6).

