PHYSICS 590 II: GROUP THEORY AND SYMMETRIES IN PHYSICS
Bhupal Dev
Final Exam
Due: 1PM, 05/04/17

1. Reality of $S U(2)$ representations:

(a) For any 2×2 unitary matrix U with unit determinant, show that there exists a matrix S such that $S^{-1} U S=U^{*}$.
(b) For $\binom{\psi_{1}}{\psi_{2}}$ in the fundamental representation 2 of $S U(2)$ with eigenvalues $\pm \frac{1}{2}$ for the diagonal generator T_{3}, i.e.

$$
\begin{equation*}
T_{3} \psi_{1}=\frac{1}{2} \psi_{1}, \quad T_{3} \psi_{2}=-\frac{1}{2} \psi_{2}, \tag{1}
\end{equation*}
$$

calculate the corresponding eigenvalues of the T_{3} generator for the conjugate representation $\mathbf{2}^{*}$.
2. $S U(2)$ subalgebra of $S U(3)$ in terms of fields: Given the quark field operators $\left(\begin{array}{l}q_{1}(x) \\ q_{2}(x) \\ q_{3}(x)\end{array}\right)$ in the fundamental representation $\mathbf{3}$ of $S U(3)$, satisfying the anticommutation relations

$$
\begin{equation*}
\left\{q_{a}(x), q_{b}^{\dagger}(y)\right\}=\delta_{a b} \delta^{3}(x-y) \tag{2}
\end{equation*}
$$

(a) calculate the commutators $\left[W_{a}^{b}, W_{c}^{d}\right]$ for the non-Hermitian generators

$$
\begin{equation*}
W_{a}^{b}=\int d^{3} x q_{b}^{\dagger}(x) q_{a}(x) \tag{3}
\end{equation*}
$$

(b) Show that W_{2}^{1}, W_{3}^{2} and W_{3}^{1} are nothing but the I-spin, U-spin and V-spin raising operators, respectively.
(c) In this notation, calculate the third component of the isospin and the hypercharge operators in terms of W_{a}^{b}.
3. Isospin breaking effects: The $S U(2)$ isospin symmetry is broken in nature by electromagnetic interactions (involving the emission and absorption of a photon), containing both $\Delta I=1$ and $\Delta I=2$ terms, as well as by strong interactions (due to
mass difference between up and down-type quarks), containing only $\Delta I=1$ piece. Just using the Wigner-Eckart theorem (and Clebsch-Gordan coefficients), calculate the relative mass splitting for the $I=\frac{3}{2}$ isomultiplet $\left(\Delta^{++}, \Delta^{+}, \Delta^{0}, \Delta^{-}\right)$due to the isospin-changing $\Delta I=1$ and $\Delta I=2$ effects, and show the mass relation

$$
\begin{equation*}
m_{\Delta^{++}}-m_{\Delta^{-}}=3\left(m_{\Delta^{+}}-m_{\Delta^{0}}\right) . \tag{4}
\end{equation*}
$$

4. Lorentz and Poincaré algebra: Using the definition of the Lorentz tensor

$$
\begin{equation*}
J_{\mu \nu}=i\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right) \tag{5}
\end{equation*}
$$

and the fact that $\partial_{\mu} x_{\nu}=\eta_{\mu \nu}$, where $\eta=\operatorname{diag}(1,-1,-1,-1)$ is the Minkowski metric in (3+1)-dimensions,
(a) derive the commutation relation

$$
\begin{equation*}
\left[J_{\mu \nu}, J_{\rho \sigma}\right]=-i\left(\eta_{\mu \rho} J_{\nu \sigma}+\eta_{\nu \sigma} J_{\mu \rho}-\eta_{\nu \rho} J_{\mu \sigma}-\eta_{\mu \sigma} J_{\nu \rho}\right) . \tag{6}
\end{equation*}
$$

(b) The Lorentz algebra (6) is extended to the Poincaré algebra by supplementing the generators $J_{\mu \nu}$ (of rotations and boosts) by the generators of translation $P_{\mu}=i \partial_{\mu}$. Derive the additional commutation relations

$$
\begin{align*}
{\left[J_{\mu \nu}, P_{\rho}\right] } & =-i\left(\eta_{\mu \rho} P_{\nu}-\eta_{\nu \rho} P_{\mu}\right) \tag{7}\\
{\left[P_{\mu}, P_{\nu}\right] } & =0 \tag{8}
\end{align*}
$$

(c) Given the Pauli-Lubanski vector

$$
\begin{equation*}
W_{\sigma} \equiv-\frac{1}{2} \varepsilon_{\mu \nu \rho \sigma} J^{\mu \nu} P^{\rho} \tag{9}
\end{equation*}
$$

derive the commutation relation

$$
\begin{equation*}
\left[W_{\mu}, W_{\nu}\right]=i \varepsilon_{\mu \nu \rho \sigma} W^{\rho} P^{\sigma} \tag{10}
\end{equation*}
$$

