Syllabus for PHYSICS 543 (Spring 2019) GROUP THEORY AND SYMMETRIES IN PHYSICS

Instructor: Prof. Bhupal Dev (bdev@wustl.edu)
Lecture Hours: 3 hours per week (M-W-F 2-3 pm, Crow 205), 14 weeks total.
Office Hours: Fridays 3-5 pm or by appointment. Office: Compton 373.
Course Website: https://web.physics.wustl.edu/bdev/PHYS_543.htm
Weekly Homework: Problem sets will be posted online every Friday after class. The written homework should be submitted by the following Friday 2.10 pm (before the class starts). No late homework will be accepted. Instructor solutions will be made available online after the due date.

Exams: One mid-term (on 6th March, 2-3 pm) and one final (on 3rd May, 8-10 am). Both will be in-class (but open-book) exams.

Grading: 37% homework, 3% class participation, 20% mid-term, 40% final.
Textbook: We will mostly follow A. Zee, Group Theory in a Nutshell for Physicists, Princeton University Press (2016). For some topics, might occasionally refer to P. Ramond, Group Theory: A Physicist's Survey, Cambridge University Press (2010) and H. Georgi, Lie Algebras in Particle Physics, Westview Press (1999).

Schedule: Here is a tentative list of topics we plan to cover.
Week 1: Symmetry operations, Group axioms, subgroup, Lagrange's theorem, Direct product, multiplication table, homomorphism and isomorphism, finite groups, permutation group.

Week 2: Equivalence class, Invariant subgroup, Simple group, Coset, Quotient group, Derived subgroup.

Week 3: Representation theory, Schur's lemma, Orthogonality theorem, Conjugacy class, Character table, Direct sum, Tensor product, Young tableaux.

Week 4: Real, pseudoreal and complex representations, Harmonic motion and zero modes. Week 5: Continuous groups, Lie algebra, Jacobi identity, Representation theory of Lie algebra, Adjoint representation.

Week 6: $S O(N)$ Lie algebra, Ladder operators, Casimir invariants, Spherical harmonics, Clebsch-Gordan decomposition, Wigner-Eckart theorem.

Week 7: $S U(N)$ Lie algebra, Local isomorphism between $S U(2)$ and $S O(3)$, Electron spin and Kramer's degeneracy.

Week 8: Pauli matrices, Gell-Mann matrices, Structure constants.
Spring Break
Week 9: Integration over continuous groups, Topology, Group manifold.
Week 10: Isospin, Eightfold way, Meson and Baryon masses.
Week 11: Cartan-Weyl basis, Classification of simple Lie algebras, Roots and weights, Dynkin diagrams.

Week 12: Spinor representations, Clifford algebra, Dirac matrices, Majorana and Weyl fermions.

Week 13: Lorentz and Poincaré groups.
Week 14: Conformal algebra, Supersymmetry and superalgebra.

