## PHYSICS 543: GROUP THEORY AND SYMMETRIES IN PHYSICS

## Homework 9

Due: April 5, 2019

1. Electric Quadrupole Transition: The components of the electric quadrupole operator $\boldsymbol{D}$ are defined as

$$
\begin{equation*}
D_{i j}=3 r_{i} r_{j}-r^{2} \delta_{i j}, \tag{1}
\end{equation*}
$$

where $r_{i}$ (with $\left.i=1,2,3\right)$ are the spatial $(x, y, z)$ coordinates.
(a) Show that there are only five independent components of $\boldsymbol{D}$, which transform under $S O(3)$ rotation as a $j=2$ representation.
(b) For a single electron transition from one atomic orbital labeled by $|n, j, m\rangle$ to another labeled by $\left|n^{\prime}, j^{\prime}, m^{\prime}\right\rangle$ (which are simultaneous eigenstates of $J_{z}$ and $\boldsymbol{J}^{2}$, with $J_{i}$ 's being the angular momentum operators) due to the application of $\boldsymbol{D}$, what values of $\Delta j=j^{\prime}-j$ and $\Delta m=m^{\prime}-m$ are allowed?
2. Finding $\boldsymbol{S} \boldsymbol{U}(\mathbf{2})$ Group Elements: We argued that any $2 \times 2$ special unitary matrix can be written as a linear combination of the Pauli matrices (the generators for $S U(2)$ ). Let us demonstrate it in another way:
(a) Start with an arbitrary complex $2 \times 2$ matrix

$$
M=\left(\begin{array}{ll}
a & b  \tag{2}\\
c & d
\end{array}\right)
$$

Show that the special unitarity conditions $\left(M^{\dagger} M=\mathbf{1}\right.$ and $\left.\operatorname{det} M=1\right)$ reduce the number of real parameters from 8 to just 3 .
(b) Call them $(r, \phi, \varphi)$. Show that $M$ can be written as

$$
M=\left(\begin{array}{cc}
\sqrt{1-r^{2}} e^{i \phi} & r e^{i \varphi}  \tag{3}\\
-r e^{-i \varphi} & \sqrt{1-r^{2}} e^{-i \phi}
\end{array}\right)
$$

(c) Show that Eq. (3) is the same as the more familiar $S U(2)$ group element in terms of the generators:

$$
\begin{equation*}
U=e^{i \theta \hat{n} \cdot \vec{\sigma} / 2} \tag{4}
\end{equation*}
$$

where $\sigma_{i}$ 's (with $i=1,2,3$ ) are the Pauli matrices. Identify $\theta$ and $\hat{n}$ in terms of $r, \phi, \varphi$.

## 3. Fun with Pauli and Gell-Mann:

(a) Using the Pauli and Gell-Mann matrices, calculate the structure constants for $S U(2)$ and $S U(3)$, respectively.
(b) Show that the Pauli and Gell-Mann matrices respectively satisfy the anticommutation relations

$$
\begin{align*}
\left\{\sigma_{j}, \sigma_{k}\right\} & =2 \delta_{j k}  \tag{5}\\
\left\{\lambda_{a}, \lambda_{b}\right\} & =\frac{4}{3} \delta_{a b}+2 d_{a b c} \lambda_{c} \tag{6}
\end{align*}
$$

where $j, k=1,2,3$, and $a, b, c,=1,2, \cdots, 8$ and the $d$-symbols in Eq. (6) are a bunch of real numbers (evaluate them!).

Can you tell the main difference between these $d_{a b c}$ and the $S U(3)$ structure constants $f_{a b c}$ (apart from the fact that they are not identical)?
(c) Using the above results, verify the statement that all $\operatorname{SU}(N)$ generators $T_{a}$ (with $a=1,2, \cdots, N^{2}-1$ ) can be normalized by

$$
\begin{equation*}
\operatorname{Tr}\left(T_{a} T_{b}\right)=\frac{1}{2} \delta_{a b} \tag{7}
\end{equation*}
$$

for $S U(2)$ and $S U(3)$.

