## PHYSICS 543: GROUP THEORY AND SYMMETRIES IN PHYSICS

1. Legendre polynomials: Use the tensor approach to work out $P_{5}(\cos \theta)$.
2. Creating states from vacuum: Given the Hermitian number operator $N \equiv a^{\dagger} a$ (where $a^{\dagger}, a$ are the creation and annihilation operators, respectively) and its eigenvectors $|n\rangle$ with non-negative integer eigenvalues $n$,
(a) Show that

$$
\begin{equation*}
|n\rangle=\frac{1}{\sqrt{n!}}\left(a^{\dagger}\right)^{n}|0\rangle, \tag{1}
\end{equation*}
$$

where $|0\rangle$ is the ground (vacuum) state such that $a|0\rangle=0$. Eq. (1) is very useful in quantum mechanics.
(b) Using Eq. (1), show that $\left[a,\left(a^{\dagger}\right)^{n}\right]=n\left(a^{\dagger}\right)^{n-1}$.
3. Clebsch-Gordan decomposition: Using the Clebsch-Gordan (CG) decomposition of $j \otimes j^{\prime}$ in the form

$$
\begin{equation*}
|J, M\rangle=\sum_{m=-j}^{j} \sum_{m^{\prime}=-j^{\prime}}^{j^{\prime}}\left|j, j^{\prime}, m, m^{\prime}\right\rangle\left\langle j, j^{\prime}, m, m^{\prime} \mid J, M\right\rangle \tag{2}
\end{equation*}
$$

(a) Work out the CG coefficients for $j=1$ and $j^{\prime}=\frac{1}{2}$ and show that

$$
\begin{equation*}
1 \otimes \frac{1}{2}=\frac{3}{2} \oplus \frac{1}{2} \tag{3}
\end{equation*}
$$

What does it mean in terms of the dimensions of the corresponding irreps?
(b) Work out the CG coefficients for $j=2$ and $j^{\prime}=1$ and show that

$$
\begin{equation*}
2 \otimes 1=3 \oplus 2 \oplus 1 \tag{4}
\end{equation*}
$$

What does it mean in terms of the dimensions of the corresponding irreps?

