PHYSICS 543: GROUP THEORY AND SYMMETRIES IN PHYSICS

Homework 4

Due: February 15, 2019

1. Number of Orthogonal Vectors: Prove that in an n-dimensional complex vector space, there can be a maximum of n linearly independent, mutually orthogonal vectors. We have used this in class to derive an important result that the number of irreducible representations of a finite group is equal to the number of its equivalence classes, i.e. the character table is always square.

2. Characters of \boldsymbol{A}_{4} :

(a) List the equivalence classes of A_{4}.
(b) Find the dimensions of the irreducible representations of A_{4}.
(c) Derive the character table for A_{4}.
(d) How does the 4-dimensional regular representation of A_{4} reduce?

3. Characters of \boldsymbol{S}_{4} :

(a) Find the dimensions of the irreducible representations of S_{4}.
(b) Derive the character table for S_{4}.
(c) How does the 4-dimensional regular representation of S_{4} reduce?
(d) What happens to the 2-dimensional representation of S_{4} on restriction to A_{4} ?

