Homework 2

1. **2-cycles:** Show that for 2-cycles

$$(1a)(1b)(1a) = (ab). (1)$$

2. Cycle structure:

(a) Show that the number of elements in the permutation group S_n with a given cycle structure is given by

$$\frac{n!}{\prod_j j^{n_j} n_j!},\tag{2}$$

where n_j is the number of *j*-cycles in the cycle structure.

- (b) Verify Eq. (2) by listing all possible cycle structures in S_5 .
- 3. S_n and A_n :
 - (a) In class, we studied that $A_n \subset S_n$. Now show that S_n is isomorphic to a subgroup of A_{n+2} .
 - (b) As an example of part (a), show explicitly how $S_3 \subset A_5$.
- 4. S_4 : Consider the permutation group S_4 .
 - (a) Enumerate the equivalence classes and subgroups of S_4 .
 - (b) Which of the subgroups are invariant ones?
 - (c) Find the quotient groups of the invariant subgroups.
 - (d) Show that A_4 is the maximal invariant subgroup of S_4 .
- 5. D_4 : Consider the dihedral group D_4 which is the symmetry group of the square.
 - (a) Enumerate the equivalence classes and subgroups of D_4 .
 - (b) Which of the subgroups are invariant ones?
 - (c) Find the quotient groups of the invariant subgroups.
 - (d) Is D_4 the direct product of some of its subgroups?