PHYSICS 543: GROUP THEORY AND SYMMETRIES IN PHYSICS

1. Course Evaluation: Please complete the course evaluation online to receive the full class participation credit (3% of the total).
2. Weight Diagram: Draw the weight diagram (in the $i_{3}-y$ plane) for the decuplet 10 of $S U(3)$ and write down the coordinates of each lattice point.
3. Roots of $\boldsymbol{S} \boldsymbol{U}(\mathbf{4})$: Calculate all the root vectors for $S U(4)$ using the $S U(2)$ subalgebra method and identify the simple roots.

4. Symplectic Group $\boldsymbol{S p}(\mathbf{2 n})$:

(a) Prove that a $2 n \times 2 n$ matrix R satisfying the symplectic condition $R^{T} J R=J$, where $J=\left(\begin{array}{cc}0 & \mathbf{1} \\ -\mathbf{1} & 0\end{array}\right)$ implies det $R=+1$ (unlike in the $S O(n)$ case, where we need to impose this condition by hand).
(b) Show that the Lie generator of the symplectic group is given by the $2 n \times 2 n$ Hermitian matrix H satisfying the condition $H^{T}=J H J$.
(c) Show that H can be written as a linear combination of the Hermitian traceless matrices $i A \otimes 1$ and $S_{i} \otimes \sigma_{i}$, where A is an arbitrary real $n \times n$ antisymmetric matrix, S_{i} (with $i=1,2,3$) are arbitrary real $n \times n$ symmetric matrices and σ_{i} are the usual 2×2 Pauli matrices.

