PHYSICS 543: GROUP THEORY AND SYMMETRIES IN PHYSICS

Homework 11

Due: April 19, 2019

1. Young tableaux: Using the Young Tableaux method discussed in class, work out $\mathbf{1 0}$ $\otimes 8$ for $S U(3)$.
2. 3-D harmonic oscillator: The 3-dimensional harmonic oscillator is described by the Hamiltonian

$$
\begin{equation*}
H=\frac{\mathbf{p}^{2}}{2 m}+\frac{1}{2} k \mathbf{r}^{2}=\sum_{i=1}^{3}\left(a_{i}^{\dagger} a_{i}+\frac{1}{2}\right) \hbar \omega \tag{1}
\end{equation*}
$$

(a) What are the energy eigenvalues?
(b) What is the symmetry group of this Hamiltonian?
(c) The eigenstates with energy E_{n} are given by $a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} \cdots a_{i_{n}}^{\dagger}|0\rangle$, which manifestly transform like an $S U(3)$ tensor with n lower (or upper) indices. Calculate the dimension d of this tensor.
(d) Show that d from part (c) gives the degree of degeneracy of the energy eigenvalues you obtained in part (a). This is yet another example of the power of symmetry.
3. Generalized Isospin: In class, we discussed the three overlapping $S U(2)$ subalgebras of $S U(3)$. These are referred to as the generalized isospins, or I-spin, U-spin, and V spin, generated by $\left(I_{3}, I_{ \pm}\right),\left(U_{3}, U_{ \pm}\right)$, and $\left(V_{3}, V_{ \pm}\right)$, respectively, where

$$
\begin{equation*}
I_{ \pm}=T_{1} \pm i T_{2}, \quad U_{ \pm}=T_{6} \pm i T_{7}, \quad \text { and } \quad V_{ \pm}=T_{4} \pm i T_{5} \tag{2}
\end{equation*}
$$

T_{a} 's being the $S U(3)$ generators. Using the $S U(3)$ Lie algebra

$$
\begin{equation*}
\left[T_{a}, T_{b}\right]=i f_{a b c} T_{c} \tag{3}
\end{equation*}
$$

and the structure constants you derived in HW9, problem 3a, work out all the commutation relations among these generalized isospin generators. These results will be used in our discussion of roots and weights - a central concept in Lie algebra.

