1. [5 points] For each of the following reactions, indicate what kind of interaction (Strong, Electromagnetic, Weak, or None) is responsible and why: (a) $\pi^0 \rightarrow \gamma + \gamma$, (b) $\pi^- \rightarrow \mu^- + \bar{\nu}_\mu$, (c) $\Lambda \rightarrow p + \pi^-$, (d) $\Delta^0 \rightarrow p + \pi^-$, (e) $p \rightarrow e^+ + \gamma$.

(a) $\pi^0 \rightarrow \gamma \gamma$ is via [electromagnetic] interaction, since it has photons in the final state. Also, it has initial state $I = 1, I_3 = 0$ and final state $I = 0$. So conserves I_3, but not I.

(b) $\pi^- \rightarrow \mu^- + \bar{\nu}_\mu$ is via [weak] interaction, since it contains neutrino final state. It takes $I = 1, I_3 = -1$ to $I = 0$, so doesn’t conserve either I or I_3.

(c) $\Lambda (uds) \rightarrow p + \pi^-$ takes $S = -1$ to $S = 0$, so doesn’t conserve strangeness. hence, must be via [weak] interaction.

(d) $\Delta^0 \rightarrow p + \pi^-$ conserves strangeness. Also $I = 3/2$ in the initial state and $I = 1/2 + 1 = 3/2$ in the final state. Similarly, $I_3 = -1/2$ in the initial state and $I_3 = 1/2 - 1 = -1/2$ in the final state. So conserves both I and I_3. Must be [strong] interaction.

(e) $p \rightarrow e^+ + \gamma$ is [not allowed] in the Standard Model, because it violates baryon number: Initial state has $B = 1$ and final state has $B = 0$. This process must be absent (or highly suppressed, as in Grand Unified Theories) to ensure proton stability (and our survival).

2. [5 points] What is the probability of a muon (with rest mean lifetime of 2.2×10^{-6}s) lasting more than 1 second in its rest frame?

The probability of decay at any given time t is simply $e^{-\Gamma t} = e^{-t/\tau}$, where $\tau = 2.2 \times 10^{-6}$s is the mean lifetime. So for $t = 1$ s, we have the probability $e^{-1/(2.2 \times 10^{-6})} = e^{-4.55 \times 10^5}$ (pretty small!). However, due to the time dilation effect, they can live much longer in the lab frame.
3. (a) [10 points] Using the meson mass formula

\[M_{\text{meson}} = m_1 + m_2 + A \frac{S_1 \cdot S_2}{m_1 m_2}, \]

(1)
calculate the mass splitting between the \(\pi \) and \(\rho \) mesons. Use \(m_u = m_d = 308 \text{ MeV}/c^2 \) for the constituent quark masses and \(A = (2m_u/\hbar)^2 \times 159 \text{ MeV}/c^2 \) for the constant in Eq. (1).

We have

\[S_1 \cdot S_2 = \frac{1}{2}(S^2 - S_1^2 - S_2^2) = \frac{1}{2} [s(s + 1) - s_1(s_1 + 1) - s_2(s_2 + 1)] \hbar^2 \]

\[= \begin{cases}
- \frac{3}{4} \hbar^2 & \text{for pseudoscalar } (s = 0) \\
\frac{1}{4} \hbar^2 & \text{for vector } (s = 1)
\end{cases}. \]

(2)

So for pseudoscalar pions, Eq. (1) becomes

\[M_\pi = 2m_u + \frac{A}{m_u^2} \left(- \frac{3}{4} \hbar^2 \right), \]

(3)
and for the vector rho mesons, Eq. (1) becomes

\[M_\rho = 2m_u + \frac{A}{m_u^2} \left(\frac{1}{4} \hbar^2 \right). \]

(4)

So the mass splitting is given by

\[\Delta M \equiv M_\rho - M_\pi = \frac{A}{m_u^2} \hbar^2 = 4 \times 159 \text{ MeV}/c^2 = \boxed{636 \text{ MeV}/c^2}. \]

(5)

(b) [10 points] Using the baryon mass formula

\[M_{\text{baryon}} = m_1 + m_2 + m_3 + A' \left[\frac{S_1 \cdot S_2}{m_1 m_2} + \frac{S_2 \cdot S_3}{m_2 m_3} + \frac{S_1 \cdot S_3}{m_1 m_3} \right], \]

(6)
calculate the mass splitting between the \(\Delta \)-baryons and nucleons (proton/neutron). Use \(m_u = m_d = 363 \text{ MeV}/c^2 \) for the constituent quark masses and \(A' = (2m_u/\hbar)^2 \times 50 \text{ MeV}/c^2 \) for the constant in Eq. (6).

first note that the \(\Delta \)-baryons are in a decuplet with \(j = 3/2 \) and the nucleons are in an octet with \(j = 1/2 \). With \(L = 0 \), we have

\[J^2 = (S_1 + S_2 + S_3)^2 = S_1^2 + S_2^2 + S_3^2 + 2(S_1 \cdot S_2 + S_1 \cdot S_3 + S_2 \cdot S_3), \]

(7)
with eigenvalue of \(j(j + 1)\hbar^2 = \frac{15}{4} \hbar^2 \) for \(j = \frac{3}{2} \) (decuplet) and \(\frac{3}{4} \hbar^2 \) for \(j = \frac{1}{2} \) (octet).

So from Eq. (7),

\[
S_1 \cdot S_2 + S_1 \cdot S_3 + S_2 \cdot S_3 = \frac{\hbar^2}{2} \left[j(j + 1) - 3 \cdot \left(\frac{1}{2} + 1 \right) \right] = \begin{cases}
\frac{3}{4} \hbar^2 & \text{for } j = \frac{3}{2} \\
-\frac{3}{4} \hbar^2 & \text{for } j = \frac{1}{2}.
\end{cases}
\]

(8)

When the three quark masses are equal, i.e. for the baryons \(\Delta \) (decuplet) and \(N \) (octet) entirely made up of \(u \) and \(d \) combinations, we can simply use Eq. (8) in Eq. (6) to get

\[
M_\Delta = 3m_u + \frac{3\hbar^2}{4m_u^2}A'.
\]

(9)

\[
M_N = 3m_u - \frac{3\hbar^2}{4m_u^2}A'.
\]

(10)

So the mass splitting is given by

\[
\Delta M \equiv M_\Delta - M_N = \frac{3\hbar^2}{2m_u^2}A' = \frac{3}{2} \times 4 \times 50 \text{ MeV}/c^2 = \boxed{300 \text{ MeV}/c^2}.
\]

(11)

4. [10 points] A Uranium-238 nucleus at rest undergoes alpha-decay (by emission of an alpha-particle, i.e. Helium-4) to Thorium-234. Find the energy and momentum of the alpha particle in terms of its mass and the masses of the Uranium and Thorium nuclei.

From four-momentum conservation, \(p_U^\mu = p_{Th}^\mu + p_\alpha^\mu \), or \(p_{Th}^\mu = p_U^\mu - p_\alpha^\mu \). Taking the scalar product of each side with itself, we get

\[
p_{Th}^2 = p_U^2 + p_\alpha^2 - 2p_U \cdot p_\alpha.
\]

(12)

Since \(p^2 = m^2c^2 \), we have \(p_U^2 = m_U^2c^2 \), and similarly for \(p_{Th} \) and \(p_\alpha \). Also in the rest frame of \(^{238}\text{U} \), \(p_U = (m_Uc, 0) \) and \(p_\alpha = \left(\frac{E_\alpha}{c}, \mathbf{p}_\alpha \right) \). So \(p_U \cdot p_\alpha = m_U E_\alpha \). Substituting these into Eq. (12), we get

\[
m_{Th}^2c^2 = m_U^2c^2 + m_\alpha^2c^2 - 2m_U E_\alpha,
\]

or,

\[
E_\alpha = \frac{m_U^2 - m_{Th}^2 + m_\alpha^2}{2m_U}c^2.
\]

(13)
As for the three-momentum, \(|\mathbf{p}_{\text{Th}}| = |\mathbf{p}_o|\) due to momentum conservation in the rest frame of \(^{238}\text{U}\). So we can use the energy-momentum relation to get:

\[
E_o^2 = |\mathbf{p}_o|^2 c^2 + m_o^2 c^4,
\]

or,

\[
|\mathbf{p}_o|^2 = \frac{E_o^2}{c^2} - m_o^2 c^2 = \frac{(m_U^2 - m_{\text{Th}}^2 + m_o^2)^2 c^2}{4m_U^2} - m_o^2 c^2,
\]

or, \(|\mathbf{p}_o| = \frac{c}{2m_U} \sqrt{m_U^4 + m_{\text{Th}}^4 + m_o^4 - 2(m_U^2 m_{\text{Th}}^2 + m_U^2 m_o^2 + m_{\text{Th}}^2 m_o^2)}\)

or, \(|\mathbf{p}_o| = \frac{c}{2m_U} \lambda^{1/2}(m_U^2, m_{\text{Th}}^2, m_o^2)\) \(\text{(14)}\)

where \(\lambda(x, y, z) = x^2 + y^2 + z^2 - 2(xy + yz + zx)\) is the so-called triangle function.

5. \([10\text{ points}]\) Using isospin conservation, find the ratio of the rates for the strong decays \(\Sigma^0 \rightarrow K^- p\) and \(\Sigma^0 \rightarrow \bar{K}^0 n\).

Note that the \(\Sigma_0 : |1, 0\rangle\) is part of the \(I = 1\) baryon triplet, whereas \((p, n)\) and \((\bar{K}^0, K^-)\) both form isospin doublets, i.e. \(p : |\frac{1}{2}, \frac{1}{2}\rangle, n : |\frac{1}{2}, -\frac{1}{2}\rangle\), and similarly, \(\bar{K}^0 : |\frac{1}{2}, \frac{1}{2}\rangle, K^- : |\frac{1}{2}, -\frac{1}{2}\rangle\). Remember that the particle with higher electric charge should have higher \(I_3\) (in case you were not sure which one of the kaons should be \(I_3 = 1/2\)).

Now we use the Clebsch-Gordan decomposition for \(\frac{1}{2} \otimes \frac{1}{2} = 1 \oplus 0\):

\[
|1, 1\rangle = \left| \frac{1}{2}, \frac{1}{2}\right\rangle \otimes \left| \frac{1}{2}, \frac{1}{2}\right\rangle,
\]

\[
|1, 0\rangle = \frac{1}{\sqrt{2}} \left[\left| \frac{1}{2}, \frac{1}{2}\right\rangle \otimes \left| \frac{1}{2}, -\frac{1}{2}\right\rangle + \left| \frac{1}{2}, -\frac{1}{2}\right\rangle \otimes \left| \frac{1}{2}, \frac{1}{2}\right\rangle \right],
\]

\[
|1, -1\rangle = \left| \frac{1}{2}, -\frac{1}{2}\right\rangle \otimes \left| \frac{1}{2}, -\frac{1}{2}\right\rangle,
\]

\[
|0, 0\rangle = \frac{1}{\sqrt{2}} \left[\left| \frac{1}{2}, \frac{1}{2}\right\rangle \otimes \left| \frac{1}{2}, -\frac{1}{2}\right\rangle - \left| \frac{1}{2}, -\frac{1}{2}\right\rangle \otimes \left| \frac{1}{2}, \frac{1}{2}\right\rangle \right]. \tag{15}\]

So the wavefunctions for \((\bar{K}^0 n)\) and \((K^- p)\) states are given by

\[
\Psi(\bar{K}^0 n) = \left| \frac{1}{2}, \frac{1}{2}\right\rangle \otimes \left| \frac{1}{2}, -\frac{1}{2}\right\rangle = \frac{1}{\sqrt{2}} (|1, 0\rangle + |0, 0\rangle)
\]

\[
\Psi(K^- p) = \left| \frac{1}{2}, -\frac{1}{2}\right\rangle \otimes \left| \frac{1}{2}, \frac{1}{2}\right\rangle = \frac{1}{\sqrt{2}} (|1, 0\rangle - |0, 0\rangle). \tag{16}\]

Since \(\Sigma^0 \rightarrow K^- p\) and \(\Sigma^0 \rightarrow \bar{K}^0 n\) are both strong decays, \(I\) must be conserved, so the \(|0, 0\rangle\) part of the wavefunctions in Eq. (16) do not contribute. Moreover, the \(|I, I_3\rangle\) states are orthonormal to each other, so \(\langle I | H | I' \rangle = \mathcal{M}_I \delta_{II'}\), where \(H\) is the
Hamiltonian and \mathcal{M} is the transition amplitude for $I = 1$. Thus, using Eqs. (16), the partial decay widths are given by

$$\Gamma_{\bar{K}^0 n} \propto |\langle \Psi(\Sigma^0)|H|\Psi(\bar{K}^0 n)\rangle|^2 = \frac{1}{2} |\langle 1, 0|H|1, 0\rangle|^2 \equiv \frac{|\mathcal{M}_1|^2}{2},$$

$$\Gamma_{K^- p} \propto |\langle \Psi(\Sigma^0)|H|\Psi(K^- p)\rangle|^2 = \frac{1}{2} |\langle 1, 0|H|1, 0\rangle|^2 \equiv \frac{|\mathcal{M}_1|^2}{2}.$$

Hence we get

$$[\Gamma_{\bar{K}^0 n} : \Gamma_{K^- p} = 1 : 1].$$