PHYSICS 474: Introduction to Particle Physics

1. [5 points] For each of the following reactions, indicate what kind of interaction (Strong, Electromagnetic, Weak, or None) is responsible and why: (a) $\pi^{0} \rightarrow \gamma+\gamma$, (b) $\pi^{-} \rightarrow$ $\mu^{-}+\bar{\nu}_{\mu}$, (c) $\Lambda \rightarrow p+\pi^{-}$, (d) $\Delta^{0} \rightarrow p+\pi^{-}$, (e) $p \rightarrow e^{+}+\gamma$.
2. [5 points] What is the probability of a muon (with rest mean lifetime of $2.2 \times 10^{-6} \mathrm{~s}$) lasting more than 1 second in its rest frame?
3. (a) [10 points] Using the meson mass formula

$$
\begin{equation*}
M_{\mathrm{meson}}=m_{1}+m_{2}+A \frac{\mathbf{S}_{1} \cdot \mathbf{S}_{2}}{m_{1} m_{2}} \tag{1}
\end{equation*}
$$

calculate the mass splitting between the π and ρ mesons. Use $m_{u}=m_{d}=308 \mathrm{MeV} / c^{2}$ for the constituent quark masses and $A=\left(2 m_{u} / \hbar\right)^{2} \times 159 \mathrm{MeV} / c^{2}$ for the constant in Eq. (1).
(b) [10 points $]$ Using the baryon mass formula

$$
\begin{equation*}
M_{\mathrm{baryon}}=m_{1}+m_{2}+m_{3}+A^{\prime}\left[\frac{\mathbf{S}_{1} \cdot \mathbf{S}_{2}}{m_{1} m_{2}}+\frac{\mathbf{S}_{2} \cdot \mathbf{S}_{3}}{m_{2} m_{3}}+\frac{\mathbf{S}_{1} \cdot \mathbf{S}_{3}}{m_{1} m_{3}}\right] \tag{2}
\end{equation*}
$$

calculate the mass splitting between the Δ-baryons and nucleons (proton/neutron). Use $m_{u}=m_{d}=363 \mathrm{MeV} / c^{2}$ for the constituent quark masses and $A^{\prime}=\left(2 m_{u} / \hbar\right)^{2} \times 50$ MeV / c^{2} for the constant in Eq. (2).
4. [10 points] A Uranium-238 nucleus at rest undergoes alpha-decay (by emission of an alpha-particle, i.e. Helium-4) to Thorium-234. Find the energy and momentum of the alpha particle in terms of its mass and the masses of the Uranium and Thorium nuclei.
5. [10 points] Using isospin conservation, find the ratio of the rates for the strong decays $\Sigma^{0} \rightarrow K^{-} p$ and $\Sigma^{0} \rightarrow \bar{K}^{0} n$.

