PHYSICS 474: Introduction to Particle Physics

1. Dirac Hamiltonian and Conservation of Angular Momentum:

(a) [5 points] Using the Dirac equation, show that the corresponding Hamiltonian is given by

$$
\begin{equation*}
H=c \gamma^{0}(\boldsymbol{\gamma} \cdot \boldsymbol{p}+m c) . \tag{1}
\end{equation*}
$$

Hint: Solve the Dirac equation for $c p^{0}$ (total energy).
(a) [5 points] Show that $[H, \boldsymbol{L}]=-i \hbar c \gamma^{0}(\gamma \times \boldsymbol{p})$, where $\boldsymbol{L}=\boldsymbol{r} \times \boldsymbol{p}$ is the orbital angular momentum.
(b) $[5$ points $][H, \boldsymbol{S}]=i \hbar c \gamma^{0}(\boldsymbol{\gamma} \times \boldsymbol{p})$, where

$$
\boldsymbol{S}=\frac{\hbar}{2} \boldsymbol{\Sigma} \quad \text { with } \boldsymbol{\Sigma}=\left(\begin{array}{ll}
\boldsymbol{\sigma} & 0 \tag{2}\\
\mathbf{0} & \boldsymbol{\sigma}
\end{array}\right)
$$

is the spin angular momentum matrix for the Dirac particles.
This result implies that $[H, \boldsymbol{J}]=0$, where $\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S}$ is the total angular momentum, i.e. \boldsymbol{J} is a constant of motion, but not \boldsymbol{L} or \boldsymbol{S} separately.
2. Dirac Spinors: The four canonical solutions of the Dirac equation are

$$
\begin{gather*}
u^{(1)}=N\left(\begin{array}{c}
1 \\
0 \\
\frac{c p_{z}}{E+m c^{2}} \\
\frac{c\left(p_{x}+i p_{y}\right)}{E+m c^{2}}
\end{array}\right), \quad u^{(2)}=N\left(\begin{array}{c}
0 \\
1 \\
\frac{c\left(p_{x}-i p_{y}\right)}{E+m c^{2}} \\
\frac{-c p_{z}}{E+m c^{2}}
\end{array}\right), \tag{3}\\
v^{(1)}=N\left(\begin{array}{c}
\frac{c\left(p_{x}-i p_{y}\right)}{E+m c^{2}} \\
\frac{-c p_{z}}{E+m c^{2}} \\
0 \\
1
\end{array}\right), \quad v^{(2)}=-N\left(\begin{array}{c}
\frac{c p_{z}}{E+m c^{2}} \\
\frac{c\left(p_{x}+i p_{y}\right)}{E+m c^{2}} \\
1 \\
0
\end{array}\right) . \tag{4}
\end{gather*}
$$

(a) [5 points] A convenient normalization for these spinors is $u^{\dagger} u=\frac{2 E}{c}$ (and similarly for v). Show that the resulting normalization factor is the same for all the spinors and is given by $N=\sqrt{\frac{\left(E+m c^{2}\right)}{c}}$.
(b) [5 points] Show that $u^{(1) \dagger} u^{(2)}=0=v^{(1) \dagger} v^{(2)}$, i.e. $u^{(1)}$ and $u^{(2)}$ are orthogonal, and likewise, $v^{(1)}$ and $v^{(2)}$ are orthogonal. What about $u^{(1) \dagger} v^{(1)}$ and $u^{(2) \dagger} v^{(2)}$?
(c) [5 points] Show that in the non-relativistic limit, the lower two components of $u^{(1)}$ and $u^{(2)}$ are smaller than the upper two components by a factor of $\frac{v}{c}$. Similarly, show that for $v^{(1)}$ and $v^{(2)}$, the upper two components are smaller than the lower two components by a factor of $\frac{v}{c}$.
(d) [5 points] If the z-axis points along the direction of motion, show that $u^{(1)}, u^{(2)}, v^{(1)}, v^{(2)}$ are all eigenstates of S_{z}, where the spin vector is given in Eq. (2).
3. Helicity Eigenspinors: [15 points] Starting from the Dirac spinors $u^{(1)}$ and $u^{(2)}$ given in Eq. (3), construct suitable linear combinations $u^{(+)}$and $u^{(-)}$so that they are eigenspinors of the helicity operator $(\hat{\boldsymbol{p}} \cdot \boldsymbol{\Sigma})$ with eigenvalues ± 1. Here $\hat{\boldsymbol{p}} \equiv \frac{\boldsymbol{p}}{|\boldsymbol{p}|}$ is the unit vector along the 3 -momentum direction and $\boldsymbol{\Sigma}$ is given in Eq. (2).

