1. Dirac Hamiltonian and Conservation of Angular Momentum:

(a) [5 points] Using the Dirac equation, show that the corresponding Hamiltonian is given by

$$H = c\gamma^{0}(\boldsymbol{\gamma} \cdot \boldsymbol{p} + mc).$$
⁽¹⁾

Hint: Solve the Dirac equation for cp^0 (total energy).

(a) [5 points] Show that $[H, L] = -i\hbar c\gamma^0 (\gamma \times p)$, where $L = r \times p$ is the orbital angular momentum.

(b) [5 points] $[H, \mathbf{S}] = i\hbar c\gamma^0 (\boldsymbol{\gamma} \times \boldsymbol{p})$, where

$$S = \frac{\hbar}{2} \Sigma$$
 with $\Sigma = \begin{pmatrix} \sigma & 0 \\ 0 & \sigma \end{pmatrix}$ (2)

is the spin angular momentum matrix for the Dirac particles.

This result implies that [H, J] = 0, where J = L + S is the total angular momentum, i.e. J is a constant of motion, but not L or S separately.

2. Dirac Spinors: The four canonical solutions of the Dirac equation are

$$u^{(1)} = N \begin{pmatrix} 1 \\ 0 \\ \frac{cp_z}{E+mc^2} \\ \frac{c(p_x+ip_y)}{E+mc^2} \end{pmatrix}, \quad u^{(2)} = N \begin{pmatrix} 0 \\ 1 \\ \frac{c(p_x-ip_y)}{E+mc^2} \\ \frac{-cp_z}{E+mc^2} \end{pmatrix}, \quad (3)$$

$$v^{(1)} = N \begin{pmatrix} \frac{c(p_x - ip_y)}{E + mc^2} \\ \frac{-cp_z}{E + mc^2} \\ 0 \\ 1 \end{pmatrix}, \quad v^{(2)} = -N \begin{pmatrix} \frac{cp_z}{E + mc^2} \\ \frac{c(p_x + ip_y)}{E + mc^2} \\ 1 \\ 0 \end{pmatrix}.$$
(4)

(a) [5 points] A convenient normalization for these spinors is $u^{\dagger}u = \frac{2E}{c}$ (and similarly for v). Show that the resulting normalization factor is the *same* for all the spinors and is given by $N = \sqrt{\frac{(E+mc^2)}{c}}$.

(b) [5 points] Show that $u^{(1)\dagger}u^{(2)} = 0 = v^{(1)\dagger}v^{(2)}$, i.e. $u^{(1)}$ and $u^{(2)}$ are orthogonal, and likewise, $v^{(1)}$ and $v^{(2)}$ are orthogonal. What about $u^{(1)\dagger}v^{(1)}$ and $u^{(2)\dagger}v^{(2)}$?

(c) [5 points] Show that in the non-relativistic limit, the lower two components of $u^{(1)}$ and $u^{(2)}$ are smaller than the upper two components by a factor of $\frac{v}{c}$. Similarly, show that for $v^{(1)}$ and $v^{(2)}$, the upper two components are smaller than the lower two components by a factor of $\frac{v}{c}$.

(d) [5 points] If the z-axis points along the direction of motion, show that $u^{(1)}, u^{(2)}, v^{(1)}, v^{(2)}$ are all eigenstates of S_z , where the spin vector is given in Eq. (2).

3. Helicity Eigenspinors: [15 points] Starting from the Dirac spinors $u^{(1)}$ and $u^{(2)}$ given in Eq. (3), construct suitable linear combinations $u^{(+)}$ and $u^{(-)}$ so that they are eigenspinors of the helicity operator $(\hat{\boldsymbol{p}} \cdot \boldsymbol{\Sigma})$ with eigenvalues ± 1 . Here $\hat{\boldsymbol{p}} \equiv \frac{\boldsymbol{p}}{|\boldsymbol{p}|}$ is the unit vector along the 3-momentum direction and $\boldsymbol{\Sigma}$ is given in Eq. (2).