PHYSICS 474: Introduction to Particle Physics

Homework 7

Due: 11.30 03/02/2020

1. Pion Decay: [5 points] Apply the Fermi Golden Rule to calculate the decay rate of $\pi^{0} \rightarrow \gamma+\gamma$. Since we don't know the matrix element yet (will do it later when discussing QED), just assume that it is proportional to α (the fine structure constant), i.e. $\mathcal{M}=\alpha m_{\pi} c$ (because it must have the dimension of momentum for $1 \rightarrow 2$ decay). Compare your result with the experimental value of the mean lifetime $\tau_{\pi^{0}}^{\exp }=8.5 \times$ $10^{-17} \mathrm{~s}$.
2. $2 \rightarrow 2$ Scattering: Consider the scattering process $1+2 \rightarrow 3+4$.
(a) [10 points] Show that
$\sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-\left(m_{1} m_{2} c^{2}\right)^{2}}=\left\{\begin{array}{c}\left|\mathbf{p}_{1}\right|\left(E_{1}+E_{2}\right) / c \quad \text { in the center-of-mass frame } \\ \left|\mathbf{p}_{1}\right| m_{2} c \quad \text { in the lab frame with particle } 2 \text { at rest } .\end{array}\right.$
(b) [15 points] Using the Fermi Golden Rule, show that the differential cross section in the lab frame, with particle 2 at rest and with particles 3 and 4 massless, is given by

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\left(\frac{\hbar}{8 \pi}\right)^{2} \frac{S|\mathcal{M}|^{2}\left|\mathbf{p}_{3}\right|}{m_{2}\left|\mathbf{p}_{1}\right|\left(E_{1}+m_{2} c^{2}-\left|\mathbf{p}_{1}\right| c \cos \theta\right)} \tag{1}
\end{equation*}
$$

where θ is the scattering angle for particle $3, S$ is the symmetry factor and \mathcal{M} is the matrix element.
3. Elastic Scattering: Consider the elastic $2 \rightarrow 2$ scattering $1+2 \rightarrow 1+2$ in the lab frame with particle 2 at rest.
(a) [15 points] Show that the differential cross section is given by

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\left(\frac{\hbar}{8 \pi}\right)^{2} \frac{S|\mathcal{M}|^{2}\left|\mathbf{p}_{3}\right|^{2}}{m_{2}\left|\mathbf{p}_{1}\right|\left[\left(E_{1}+m_{2} c^{2}\right)\left|\mathbf{p}_{3}\right|-\left|\mathbf{p}_{1}\right| E_{3} \cos \theta\right]} \tag{2}
\end{equation*}
$$

(b) [5 points] If the incident particle is massless (i.e. $m_{1}=0$), show that the result in part (a) simplifies to

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=S\left(\frac{\hbar E_{3}}{8 \pi m_{2} c E_{1}}\right)^{2}|\mathcal{M}|^{2} \tag{3}
\end{equation*}
$$

