PHYSICS 474: Introduction to Particle Physics

1. Meson Masses:

The mass of a meson made of light quarks and anti-quarks is given by

$$
\begin{equation*}
M_{\mathrm{meson}}=m_{1}+m_{2}+A \frac{\mathbf{S}_{1} \cdot \mathbf{S}_{2}}{m_{1} m_{2}} \tag{1}
\end{equation*}
$$

where $m_{1,2}$ and $\mathbf{S}_{1,2}$ are the effective masses and spins of the constituent (anti)quarks, respectively, and A is a constant.
(a) [5 points] Using the constituent quark masses $m_{u}=m_{d}=308 \mathrm{MeV} / c^{2}, m_{s}=$ $483 \mathrm{MeV} / c^{2}$, and the best-fit value for $A=\left(\frac{2 m_{u}}{\hbar}\right)^{2} 159 \mathrm{MeV} / c^{2}$, calculate the masses of the pseudo-scalar mesons $\pi, K^{+}, K^{0}, \eta, \eta^{\prime}$ and the vector mesons $\rho, K^{*+}, K^{* 0}, \omega, \phi$.
[Hint: For linear combinations like $\eta=\frac{1}{\sqrt{6}}(u \bar{u}+d \bar{d}-2 s \bar{s})$, first find the masses for pure $u \bar{u}, d \bar{d}, s \bar{s}$, and then think of the η as being $\frac{1}{6} u \bar{u}, \frac{1}{6} d \bar{d}$ and $\frac{4}{6} s \bar{s}$. Similarly, for $\left.\eta^{\prime}.\right]$
(b) [5 points] Let's check how good is Eq. (1) for heavier quarks. Using $m_{c}=$ $1250 \mathrm{MeV} / c^{2}$, and the same values for $m_{u, d, s}$ and A as in part (a), calculate the masses of the 'charmed' pseudo-scalar mesons $\eta_{c}(c \bar{c}), D^{0}(c \bar{u}), D_{s}^{+}(c \bar{s})$, and the corresponding vector mesons $J / \psi(c \bar{c}), D^{* 0}(c \bar{u}), D_{s}^{*+}(c \bar{s})$.
(c) [5 points] Using $m_{b}=4.5 \mathrm{GeV} / c^{2}$, repeat the same exercise for the 'beauty' pseudo-scalar mesons $\eta_{b}(b \bar{b}), B^{+}(u \bar{b}), B^{0}(d \bar{b}), B_{c}^{+}(c \bar{b})$ and the corresponding vector mesons $\Upsilon(b \bar{b}), B^{*+}(u \bar{b}), B^{* 0}(d \bar{b}), B_{c}^{*+}(c \bar{b})$.
(d) [Bonus 5 points] Compare all the masses found in parts (a)-(c) to the experimental values as given in the Particle Data Book.
[Hint: You may not find some of the 'beauty' meson entries there, because they have not been discovered yet.]
2. Baryon Masses: We can write a mass formula similar to Eq. (1) for baryons:

$$
\begin{equation*}
M_{\text {baryon }}=m_{1}+m_{2}+m_{3}+A^{\prime}\left[\frac{\mathbf{S}_{1} \cdot \mathbf{S}_{2}}{m_{1} m_{2}}+\frac{\mathbf{S}_{1} \cdot \mathbf{S}_{3}}{m_{1} m_{3}}+\frac{\mathbf{S}_{2} \cdot \mathbf{S}_{3}}{m_{2} m_{3}}\right] \tag{2}
\end{equation*}
$$

where $m_{1,2,3}$ and $\mathbf{S}_{1,2,3}$ are the effective masses and spins of the constituent three quarks, and A^{\prime} is a constant.
(a) [25 points] Using Eq. (2), calculate the masses of the baryon decuplet and octets. Note that for baryons, the best-fit constituent quark masses are $m_{u}=m_{d}=$ $363 \mathrm{MeV} / c^{2}, m_{s}=538 \mathrm{MeV} / c^{2}$ and $A^{\prime}=\left(\frac{2 m_{u}}{\hbar}\right)^{2} 50 \mathrm{MeV} / c^{2}$.
(b) [Bonus 5 points] Compare all the masses found in part (a) to the experimental values as given in the Particle Data Book.
3. Λ-baryon: [10 points] Requiring that the different baryon wave functions must be orthonormal to each other and using the results for Λ^{\prime} and Σ^{0} discussed in class, find the flavor wavefunction of the iso-singlet Λ-baryon.

