PHYSICS 474: Introduction to Particle Physics

Homework 3

Due: 11.30 Monday 02/03/2020

1. **'Spinning' Electron:** Some popular science books 'visualize' the electron spin by interpreting it literally as a *classical* solid sphere rotating about an axis going through its center.

(a) [5 points] If the electron has a radius r and is spinning with angular momentum $\hbar/2$, what is the speed of a point on its 'equator'?

(b) [5 points] Experimentally, we have probed distance scales down to 10^{-18} m and do not find any structure inside the electron. What does this tell us about the speed and this model of 'spinning' electron?

- 2. Lie Algebra of SO(3): The Lie algebra is defined by the commutation relation $[J_i, J_j] = i f_{ijk} J_k$ (sum over k implied), where J_i 's are the generators and f_{ijk} are called the *structure constants* of the given Lie group.
 - (a) [5 points] Show that if J_i 's are Hermitian, then f_{ijk} must be real numbers.

(b) [5 points] For the SO(3) group, use the explicit 3-dimensional matrix representations of the J_i 's discussed in class to show that $f_{ijk} = \varepsilon_{ijk}$ (the Levi-Civita symbol).

(c) [10 points] Use the orbital angular momentum operator in quantum mechanics: $\boldsymbol{L} = -i\hbar \boldsymbol{x} \times \boldsymbol{\nabla}$ to show explicitly that $[L_i, L_j] = i\hbar \varepsilon_{ijk} L_k$, i.e. we can identify the 3 generators of SO(3) with the x, y, z components of the orbital angular momentum.

(d) [5 points] Given the ladder operators $J_{\pm} = J_x \pm i J_y$, use the result from part (b) to find the commutation relations $[J_z, J_{\pm}]$, $[J_+, J_-]$ and $[J_i, J^2]$.

3. Clebsch-Gordan Coefficients:

(a) [10 points] For an electron in a hydrogen atom with orbital angular momentum quantum number l = 1, what are the possible *total* angular momentum quantum number j values? Work out the relevant Clebsch-Gordan coefficients.

(b) [5 points] For the electron in the $|j = \frac{3}{2}, j_z = \frac{1}{2}\rangle$ state, what is the probability of finding it with the z-component of spin $s_z = \frac{1}{2}$?