PHYSICS 474: Introduction to Particle Physics

Homework 2

Due: 11.30 Monday, 1/27/2020

1. Mandelstam variables: In a two-body scattering process $A + B \rightarrow C + D$, it is convenient to define the Lorentz invariants, called the *Mandelstam variables*,

$$s \equiv \frac{(p_A + p_B)^2}{c^2}, \qquad t \equiv \frac{(p_A - p_C)^2}{c^2}, \qquad u \equiv \frac{(p_A - p_D)^2}{c^2}.$$
 (1)

- (a) [5 points] Show that $s + t + u = m_A^2 + m_B^2 + m_C^2 + m_D^2$.
- (b) [5 points] Show that the total center-of-mass (CM) energy $E_{\text{tot}}^{\text{CM}} = \sqrt{s} c^2$.
- (c) [10 points] For elastic scattering of identical particles, $A + A \rightarrow A + A$, show that

$$s = \frac{4(\mathbf{p}^2 + m^2 c^2)}{c^2}, \quad t = \frac{-2\mathbf{p}^2(1 - \cos\theta)}{c^2}, \quad u = \frac{-2\mathbf{p}^2(1 + \cos\theta)}{c^2}, \quad (2)$$

where **p** is the CM momentum and θ is the scattering angle.

2. Compton Scattering: [10 points] A photon of wavelength λ collides elastically with an electron and scatters at angle θ . Find its outgoing wavelength.

3. Unitary and Orthogonal Groups:

(a) [5 points] Show that the set U(N) of all $N \times N$ unitary matrices constitutes a group.

(b) [5 points] Show that the set SU(N) of all $N \times N$ unitary matrices with unit determinant constitutes a subgroup of U(N).

(c) [5 points] Show that the set SO(N) of all $N \times N$ real orthogonal matrices with unit determinant constitutes a subgroup of SU(N).

4. Rotation in 2-D: [5 points] Consider a vector \mathbf{p} in two dimensions, with its components (p_x, p_y) with respect to the Cartesian axes (x, y). What are its components (p'_x, p'_y) in a coordinate system (x', y') which is rotated counterclockwise by an angle θ ? Express your answer in terms of p_x, p_y, θ . How is this transformation related to the SO(2) group?