PHYSICS 474: Introduction to Particle Physics

Homework 2

Due: 11.30 Monday, 1/27/2020

1. Mandelstam variables: In a two-body scattering process $A+B \rightarrow C+D$, it is convenient to define the Lorentz invariants, called the Mandelstam variables,

$$
\begin{equation*}
s \equiv \frac{\left(p_{A}+p_{B}\right)^{2}}{c^{2}}, \quad t \equiv \frac{\left(p_{A}-p_{C}\right)^{2}}{c^{2}}, \quad u \equiv \frac{\left(p_{A}-p_{D}\right)^{2}}{c^{2}} \tag{1}
\end{equation*}
$$

(a) [5 points] Show that $s+t+u=m_{A}^{2}+m_{B}^{2}+m_{C}^{2}+m_{D}^{2}$.
(b) [5 points] Show that the total center-of-mass (CM) energy $E_{\text {tot }}^{\mathrm{CM}}=\sqrt{s} c^{2}$.
(c) [10 points] For elastic scattering of identical particles, $A+A \rightarrow A+A$, show that

$$
\begin{equation*}
s=\frac{4\left(\mathbf{p}^{2}+m^{2} c^{2}\right)}{c^{2}}, \quad t=\frac{-2 \mathbf{p}^{2}(1-\cos \theta)}{c^{2}}, \quad u=\frac{-2 \mathbf{p}^{2}(1+\cos \theta)}{c^{2}} \tag{2}
\end{equation*}
$$

where \mathbf{p} is the CM momentum and θ is the scattering angle.
2. Compton Scattering: [10 points] A photon of wavelength λ collides elastically with an electron and scatters at angle θ. Find its outgoing wavelength.

3. Unitary and Orthogonal Groups:

(a) [5 points] Show that the set $U(N)$ of all $N \times N$ unitary matrices constitutes a group.
(b) [5 points] Show that the set $S U(N)$ of all $N \times N$ unitary matrices with unit determinant constitutes a subgroup of $U(N)$.
(c) [5 points] Show that the set $S O(N)$ of all $N \times N$ real orthogonal matrices with unit determinant constitutes a subgroup of $S U(N)$.
4. Rotation in 2-D: [5 points] Consider a vector \mathbf{p} in two dimensions, with its components $\left(p_{x}, p_{y}\right)$ with respect to the Cartesian axes (x, y). What are its components $\left(p_{x}^{\prime}, p_{y}^{\prime}\right)$ in a coordinate system $\left(x^{\prime}, y^{\prime}\right)$ which is rotated counterclockwise by an angle θ ? Express your answer in terms of p_{x}, p_{y}, θ. How is this transformation related to the $S O(2)$ group?

