PHYSICS 474: Introduction to Particle Physics

Midterm

- [5 points] Following is a list of conservation laws (or symmetries) for interactions between particles. For each indicate by S, E, W those classes of interactions – strong, electromagnetic, weak – which respect that symmetry.
 - (a) Isospin (I) conservation
 - (b) I_3 (but not I) conservation
 - (c) Strangeness (S) conservation
 - (d) CP conservation
 - (e) CPT conservation

Bonus 1 (2 points): If any interaction violates any of these symmetries, give an example decay process in each case to support your claim.

2. (a) [10 points] Suppose a particle X decays at rest to two other particles Y and Z. Specify the kinematic constraint under which this decay is allowed. Find the energies and momenta of the outgoing particles.

(b) [5 points] A typical example of 2-body decay is $\pi^+ \to \mu^+ + \nu_{\mu}$ (or $\pi^- \to \mu^- + \bar{\nu}_{\mu}$). Assuming the neutrino to be massless, find the energy and momentum of the muon in MeV units. [*Hint:* $m_{\pi} = 139.6 \text{ MeV}/c^2$ and $m_{\mu} = 105.6 \text{ MeV}/c^2$.]

3. [10 points] The electrically neutral baryon Σ^0 (of mass 1915 MeV/ c^2) has isospin $I = 1, I_3 = 0$. Find the ratio of the rates for the *strong* decays $\Sigma^0 \to K^- p$ and $\Sigma^0 \to \bar{K}^0 n$. [*Hint*: (p, n) and (\bar{K}^0, K^-) both form isospin doublets.]

Bonus 2 (2 points): There also exists a weak decay mode: $\Sigma^0 \to \pi^- p$. What should be the rate of this decay as compared to that of $\Sigma^0 \to K^- p$?

Bonus 3 (1 point): What about the decay $\Sigma^0 \to \pi^+ \pi^-$?