PHYSICS 474: Introduction to Particle Physics

Homework 6

1. Meson Masses:

The mass of a meson made of light quarks and anti-quarks is given by

$$M_{\text{meson}} = m_1 + m_2 + A \frac{\mathbf{S}_1 \cdot \mathbf{S}_2}{m_1 m_2},$$
 (1)

where $m_{1,2}$ and $\mathbf{S}_{1,2}$ are the effective masses and spins of the constituent (anti)quarks, respectively, and A is a constant.

(a) [5 points] Using the constituent quark masses $m_u = m_d = 308 \text{ MeV}/c^2$, $m_s = 483 \text{ MeV}/c^2$, and the best-fit value for $A = \left(\frac{2m_u}{\hbar}\right)^2 159 \text{ MeV}/c^2$, calculate the masses of the pseudo-scalar mesons $\pi, K^+, K^0, \eta, \eta'$ and the vector mesons $\rho, K^{*+}, K^{*0}, \omega, \phi$. [*Hint:* For linear combinations like $\eta = \frac{1}{\sqrt{6}}(u\bar{u} + d\bar{d} - 2s\bar{s})$, first find the masses for pure $u\bar{u}, d\bar{d}, s\bar{s}$, and then think of the η as being $\frac{1}{6}u\bar{u}, \frac{1}{6}d\bar{d}$ and $\frac{4}{6}s\bar{s}$. Similarly, for η' .] (b) [5 points] Let's check how good is Eq. (1) for *heavier* quarks. Using $m_c = 1250 \text{ MeV}/c^2$, and the same values for $m_{u,d,s}$ and A as in part (a), calculate the masses

of the 'charmed' pseudo-scalar mesons $\eta_c(c\bar{c})$, $D^0(c\bar{u})$, $D^+_s(c\bar{s})$, and the corresponding vector mesons $J/\psi(c\bar{c})$, $D^{*0}(c\bar{u})$, $D^{*+}_s(c\bar{s})$.

(c) [5 points] Using $m_b = 4.5 \text{ GeV}/c^2$, repeat the same exercise for the 'beauty' pseudo-scalar mesons $\eta_b(b\bar{b})$, $B^+(u\bar{b})$, $B^0(d\bar{b})$, $B_c^+(c\bar{b})$ and the corresponding vector mesons $\Upsilon(b\bar{b})$, $B^{*+}(u\bar{b})$, $B^{*0}(d\bar{b})$, $B_c^{*+}(c\bar{b})$.

(d) [5 points] Compare all the masses found in parts (a)-(c) to the experimental values as given in the *Particle Data Book*.

[*Hint:* You may not find some of the 'beauty' meson entries there, because they have not been discovered yet.]

2. Baryon Masses: We can write a mass formula similar to Eq. (1) for baryons:

$$M_{\text{baryon}} = m_1 + m_2 + m_3 + A' \left[\frac{\mathbf{S}_1 \cdot \mathbf{S}_2}{m_1 m_2} + \frac{\mathbf{S}_1 \cdot \mathbf{S}_3}{m_1 m_3} + \frac{\mathbf{S}_2 \cdot \mathbf{S}_3}{m_2 m_3} \right],$$
(2)

where $m_{1,2,3}$ and $\mathbf{S}_{1,2,3}$ are the effective masses and spins of the constituent three quarks, and A' is a constant.

(a) [15 points] Using Eq. (2), calculate the masses of the baryon decuplet $\Delta, \Sigma^*, \Xi^*, \Omega$ and octet N, Σ, Λ, Ξ . Note that for baryons, the best-fit constituent quark masses are $m_u = m_d = 363 \text{ MeV}/c^2, m_s = 538 \text{ MeV}/c^2$ and $A' = \left(\frac{2m_u}{\hbar}\right)^2 50 \text{ MeV}/c^2$.

(b) [5 points] Compare all the masses found in part (a) to the experimental values as given in the *Particle Data Book*.

3. A-baryon: [10 points] Requiring that the different baryon wave functions must be orthonormal to each other and using the results for Λ' and Σ^0 discussed in class, show that the flavor part of the iso-singlet Λ -baryon is given by

$$\Lambda : \frac{1}{\sqrt{12}} \left[2(ud - du)s + (us - su)d - (ds - sd)u \right].$$
 (3)