PHYSICS 474: Introduction to Particle Physics

Homework 5

Due: noon Friday, Feb 23, 2018

1. C, P and T Properties of Dipole Moments:

The non-relativistic Hamiltonian of a system in the presence of electric and magnetic fields is given by

$$H = -\frac{1}{|\mathbf{J}|} (\mu \, \mathbf{J} \cdot \mathbf{B} + d \, \mathbf{J} \cdot \mathbf{E}), \qquad (1)$$

where **J**, **B** and **E** are the total angular momentum, magnetic and electric field vectors respectively, and μ , d are the magnetic and electric dipole moments respectively.

(a) [3 points] Find the charge conjugation (C), parity (P) and time-reversal (T) transformation properties of **J**, **B** and **E**.

[*Hint:* You may use the fact that Maxwell's equations are invariant under C, P, T.]

(b) [2 points] What can you tell about the C, P and T properties of the magnetic and electric dipole moments (μ and d) in Eq. (1)?

2. SO(4) Algebra:

(a) [5 points] Show that there are N(N-1)/2 linearly independent real, antisymmetric $N \times N$ matrices. This means there are N(N-1)/2 generators for SO(N).

[*Hint:* You might find it useful to write the generators as $\mathcal{J}_{(mn)}$ where the *m*-th row, *n*-th column is 1; so *n*-th row, *m*-th column is -1 to make it anti-symmetric; and the rest are zero. You can think of them as generating rotations in the (mn)-plane. Count how many ways you can do this for an $N \times N$ matrix.]

(b) [5 points] From part (a), we know there are 6 generators for SO(4), i.e. $\mathcal{J}_{(mn)}$ with $(mn) = \{(12), (23), (31), (14), (24), (34)\}$. Make them Hermitian by inserting an -i, i.e. $J_{(mn)} = -i\mathcal{J}_{(mn)}$. Show that their commutators are given by

$$[J_{(mn)}, J_{(pq)}] = i \left(\delta_{mp} J_{(nq)} + \delta_{nq} J_{(mp)} - \delta_{np} J_{(mq)} - \delta_{mq} J_{(np)} \right),$$
(2)

where δ_{mn} 's are the usual Kronecker delta functions.

[*Hint*: It might be easier if you first realize that the elements of the matrix $J_{(mn)}$ can be written as $[J_{(mn)}]_{ij} = -i(\delta_{mi}\delta_{nj} - \delta_{mj}\delta_{ni}).$]

(c) [5 points] The 6 matrices in part (b) naturally divide into two sets: (i) $\{J_{(23)}, J_{(31)}, J_{(12)}\}$, which generate rotations in the 3-dimensional subspace spanned by the 1-, 2-, and 3-axes, and (ii) $\{J_{(14)}, J_{(24)}, J_{(34)}\}$, which involve rotations involving the 4-th axis. Denote the set (i) as $\{J_1, J_2, J_3\}$ and the set (ii) as $\{K_1, K_2, K_3\}$. Using Eq. (2), show that the SO(4) algebra now becomes

$$[J_i, J_j] = i\varepsilon_{ijk}J_k, \qquad [J_i, K_j] = i\varepsilon_{ijk}K_k, \qquad [K_i, K_j] = i\varepsilon_{ijk}J_k.$$
(3)

3. LRL Vector, SO(4) Algebra and Hydrogen Spectrum:

The Lagrange-Runge-Lenz (LRL, not LOL) vector for a Coulomb-type potential $V(r) = -\frac{\kappa}{r}$ is given by

$$\mathcal{L} = \frac{1}{m} (\mathbf{L} \times \mathbf{p}) + \frac{\kappa \mathbf{r}}{r} \equiv \frac{1}{2m} (\mathbf{L} \times \mathbf{p} - \mathbf{p} \times \mathbf{L}) + \frac{\kappa \mathbf{r}}{r}, \qquad (4)$$

where \mathbf{L} and \mathbf{p} are the angular and linear momentum, respectively.

(a) [5 points] Show that $\frac{d\mathcal{L}}{dt} = 0$, i.e. \mathcal{L} is a conserved quantity.

(b) [5 points] Show that $[L_i, \mathcal{L}_j] = i\hbar\varepsilon_{ijk}\mathcal{L}_k$ and $[\mathcal{L}_i, \mathcal{L}_j] = -\frac{2H}{m}i\hbar\varepsilon_{ijk}L_k$, where $H = \frac{p^2}{2m} - \frac{\kappa}{r}$ is the non-relativistic Hamiltonian.

[*Hint*: Use $[r_i, p_j] = i\hbar\delta_{ij}$. Then show that $[L_i, r_j] = i\hbar\varepsilon_{ijk}r_k$ and $[L_i, p_j] = i\hbar\varepsilon_{ijk}p_k$.]

(c) [5 points] Define $M_i \equiv \sqrt{-\frac{m}{2H}} \mathcal{L}_i$. Using your results from part (b), together with the relation $[L_i, L_j] = i\hbar \varepsilon_{ijk} L_k$ (angular momentum algebra) and Problem 2c, show that L_i and M_i satisfy the SO(4) algebra.

(d) [5 points] Define $A_{\pm,i} = (L_i \pm M_i)/2$. Show that

$$[A_{+,i}, A_{+,j}] = i\hbar\varepsilon_{ijk}A_{+,k}, \qquad [A_{-,i}, A_{-,j}] = i\hbar\varepsilon_{ijk}A_{-,k}, \qquad [A_{+,i}, A_{-,j}] = 0.$$
(5)

(e) [5 points] Show that $\mathbf{A}_{+}^{2} - \mathbf{A}_{-}^{2} = 0$ and $\mathbf{A}_{+}^{2} + \mathbf{A}_{-}^{2} = -\frac{1}{2} \left(\hbar^{2} + \frac{m}{2H} \kappa^{2} \right).$

(f) [5 points] Replacing the Hamiltonian H with its eigenvalue E and \mathbf{A}_{\pm}^2 with their eigenvalues $a_{\pm}(a_{\pm}+1)$ (with $a_{\pm}=a_{\pm}\equiv a$, because $\mathbf{A}_{\pm}^2-\mathbf{A}_{\pm}^2=0$), show that

$$E = -\frac{m\kappa^2}{2\hbar^2} \frac{1}{n^2}, \qquad (6)$$

where $n \equiv 2a + 1 = 1, 2, 3, \cdots$ for $a = 0, \frac{1}{2}, 1, \cdots$.