PHYSICS 474: Introduction to Particle Physics

Homework 5

Due: noon Friday, Feb 23, 2018

1. C, P and T Properties of Dipole Moments:

The non-relativistic Hamiltonian of a system in the presence of electric and magnetic fields is given by

$$
\begin{equation*}
H=-\frac{1}{|\mathbf{J}|}(\mu \mathbf{J} \cdot \mathbf{B}+d \mathbf{J} \cdot \mathbf{E}) \tag{1}
\end{equation*}
$$

where \mathbf{J}, \mathbf{B} and \mathbf{E} are the total angular momentum, magnetic and electric field vectors respectively, and μ, d are the magnetic and electric dipole moments respectively.
(a) [3 points] Find the charge conjugation (C), parity (P) and time-reversal (T) transformation properties of \mathbf{J}, \mathbf{B} and \mathbf{E}.
[Hint: You may use the fact that Maxwell's equations are invariant under C, P, T.]
(b) [2 points] What can you tell about the C, P and T properties of the magnetic and electric dipole moments (μ and d) in Eq. (1)?
2. $S O(4)$ Algebra:
(a) [5 points] Show that there are $N(N-1) / 2$ linearly independent real, antisymmetric $N \times N$ matrices. This means there are $N(N-1) / 2$ generators for $S O(N)$.
[Hint: You might find it useful to write the generators as $\mathcal{J}_{(m n)}$ where the m-th row, n-th column is 1 ; so n-th row, m-th column is -1 to make it anti-symmetric; and the rest are zero. You can think of them as generating rotations in the $(m n)$-plane. Count how many ways you can do this for an $N \times N$ matrix.]
(b) [5 points] From part (a), we know there are 6 generators for $S O(4)$, i.e. $\mathcal{J}_{(m n)}$ with $(m n)=\{(12),(23),(31),(14),(24),(34)\}$. Make them Hermitian by inserting an $-i$, i.e. $J_{(m n)}=-i \mathcal{J}_{(m n)}$. Show that their commutators are given by

$$
\begin{equation*}
\left[J_{(m n)}, J_{(p q)}\right]=i\left(\delta_{m p} J_{(n q)}+\delta_{n q} J_{(m p)}-\delta_{n p} J_{(m q)}-\delta_{m q} J_{(n p)}\right), \tag{2}
\end{equation*}
$$

where $\delta_{m n}$'s are the usual Kronecker delta functions.
[Hint: It might be easier if you first realize that the elements of the matrix $J_{(m n)}$ can be written as $\left.\left[J_{(m n)}\right]_{i j}=-i\left(\delta_{m i} \delta_{n j}-\delta_{m j} \delta_{n i}\right).\right]$
(c) [5 points] The 6 matrices in part (b) naturally divide into two sets: (i) $\left\{J_{(23)}, J_{(31)}, J_{(12)}\right\}$, which generate rotations in the 3 -dimensional subspace spanned by the 1 -, 2 -, and 3-axes, and (ii) $\left\{J_{(14)}, J_{(24)}, J_{(34)}\right\}$, which involve rotations involving the 4 -th axis. Denote the set (i) as $\left\{J_{1}, J_{2}, J_{3}\right\}$ and the set (ii) as $\left\{K_{1}, K_{2}, K_{3}\right\}$. Using Eq. (2), show that the $S O(4)$ algebra now becomes

$$
\begin{equation*}
\left[J_{i}, J_{j}\right]=i \varepsilon_{i j k} J_{k}, \quad\left[J_{i}, K_{j}\right]=i \varepsilon_{i j k} K_{k}, \quad\left[K_{i}, K_{j}\right]=i \varepsilon_{i j k} J_{k} \tag{3}
\end{equation*}
$$

3. LRL Vector, $S O(4)$ Algebra and Hydrogen Spectrum:

The Lagrange-Runge-Lenz (LRL, not LOL) vector for a Coulomb-type potential $V(r)=-\frac{\kappa}{r}$ is given by

$$
\begin{equation*}
\mathcal{L}=\frac{1}{m}(\mathbf{L} \times \mathbf{p})+\frac{\kappa \mathbf{r}}{r} \equiv \frac{1}{2 m}(\mathbf{L} \times \mathbf{p}-\mathbf{p} \times \mathbf{L})+\frac{\kappa \mathbf{r}}{r}, \tag{4}
\end{equation*}
$$

where \mathbf{L} and \mathbf{p} are the angular and linear momentum, respectively.
(a) [5 points] Show that $\frac{d \mathcal{L}}{d t}=0$, i.e. \mathcal{L} is a conserved quantity.
(b) $[5$ points $]$ Show that $\left[L_{i}, \mathcal{L}_{j}\right]=i \hbar \varepsilon_{i j k} \mathcal{L}_{k}$ and $\left[\mathcal{L}_{i}, \mathcal{L}_{j}\right]=-\frac{2 H}{m} i \hbar \varepsilon_{i j k} L_{k}$, where $H=$ $\frac{p^{2}}{2 m}-\frac{\kappa}{r}$ is the non-relativistic Hamiltonian.
[Hint: Use $\left[r_{i}, p_{j}\right]=i \hbar \delta_{i j}$. Then show that $\left[L_{i}, r_{j}\right]=i \hbar \varepsilon_{i j k} r_{k}$ and $\left[L_{i}, p_{j}\right]=i \hbar \varepsilon_{i j k} p_{k}$.]
(c) [5 points] Define $M_{i} \equiv \sqrt{-\frac{m}{2 H}} \mathcal{L}_{i}$. Using your results from part (b), together with the relation $\left[L_{i}, L_{j}\right]=i \hbar \varepsilon_{i j k} L_{k}$ (angular momentum algebra) and Problem 2c, show that L_{i} and M_{i} satisfy the $S O(4)$ algebra.
(d) [5 points] Define $A_{ \pm, i}=\left(L_{i} \pm M_{i}\right) / 2$. Show that

$$
\begin{equation*}
\left[A_{+, i}, A_{+, j}\right]=i \hbar \varepsilon_{i j k} A_{+, k}, \quad\left[A_{-, i}, A_{-, j}\right]=i \hbar \varepsilon_{i j k} A_{-, k}, \quad\left[A_{+, i}, A_{-, j}\right]=0 \tag{5}
\end{equation*}
$$

(e) [5 points] Show that $\mathbf{A}_{+}^{2}-\mathbf{A}_{-}^{2}=0$ and $\mathbf{A}_{+}^{2}+\mathbf{A}_{-}^{2}=-\frac{1}{2}\left(\hbar^{2}+\frac{m}{2 H} \kappa^{2}\right)$.
(f) [5 points] Replacing the Hamiltonian H with its eigenvalue E and $\mathbf{A}_{ \pm}^{2}$ with their eigenvalues $a_{ \pm}\left(a_{ \pm}+1\right)$ (with $a_{+}=a_{-} \equiv a$, because $\mathbf{A}_{+}^{2}-\mathbf{A}_{-}^{2}=0$), show that

$$
\begin{equation*}
E=-\frac{m \kappa^{2}}{2 \hbar^{2}} \frac{1}{n^{2}} \tag{6}
\end{equation*}
$$

where $n \equiv 2 a+1=1,2,3, \cdots$ for $a=0, \frac{1}{2}, 1, \cdots$.

