PHYSICS 474: Introduction to Particle Physics

Homework 4

Due: noon Friday, Feb 16, 2018

1. Isospin in Nuclear Physics:

(a) [5 points] The α particle (used in Rutherford's scattering experiment) is a bound state of two protons and two neutrons, i.e. a ⁴He nucleus. Given that we do not find either ⁴H or ⁴Li in nature, what can you say about the isospin of an α particle?

(b) [5 points] Based on your result from part (a), explain why the reaction $D + D \rightarrow \alpha + \pi^0$ has never been observed. [Here D stands for deuteron (²H).]

(c) [5 points] Based on isospin arguments, would you expect a four-proton bound state (⁴Be) to exist? What about a four-neutron bound state?

2. Isospin in Particle Physics: [15 points] Using the fact that strong interactions conserve isospin, find the ratio of cross sections for the following reactions:

(a)
$$\pi^- + p \to K^0 + \Sigma^0$$
, (b) $\pi^- + p \to K^+ + \Sigma^-$, (c) $\pi^+ + p \to K^+ + \Sigma^+$.

You can assume that the CM energy is such that either the I = 3/2 or I = 1/2 channel dominates. [*Hint:* See p.35-36 of Griffiths if you aren't sure what isospin multiplets K mesons and Σ baryons belong to.]

3. Gell-Mann Matrices and SU(3) Algebra: Using the explicit form of the Gell-Mann matrices λ_a (with $a = 1, \dots, 8$) discussed in class, show that

(a) [10 points] $[T_a, T_b] = i f_{abc} T_c$ (sum over c implied), where $T_a = \lambda_a/2$ are the generators and f_{abc} 's are the structure constants of SU(3). List the non-zero f_{abc} 's and their values. [*Hint:* If correctly done, you should find that all of them are real numbers, in agreement with the general result you proved in Homework 3, Problem 2(a).]

(b) [10 points] The subsets $\{\lambda_1, \lambda_2, \lambda_3\}$, $\{\lambda_4, \lambda_5, [\lambda_4, \lambda_5]\}$ and $\{\lambda_6, \lambda_7, [\lambda_6, \lambda_7]\}$ generate SU(2) sub-algebras. [*Hint:* SU(2) algebra is given by the commutation relation $[J_i, J_j] = i\varepsilon_{ijk}J_k$.]