PHYSICS 474: Introduction to Particle Physics

Homework 3

Due: noon Friday, Feb 9, 2018

1. 'Spinning' Electron: Some popular science books 'visualize' the electron spin by interpreting it literally as a classical solid sphere rotating about an axis going through its center.
(a) [5 points] If the electron has a radius r and is spinning with angular momentum $\hbar / 2$, what is the speed of a point on its 'equator'?
(b) [5 points] Experimentally, we have probed distance scales down to $10^{-18} \mathrm{~m}$ and do not find any structure inside the electron. What does this tell us about the speed and this model of 'spinning' electron?
2. Lie Algebra of $S O(3)$ Rotations: The Lie algebra is defined by the commutation relation $\left[J_{i}, J_{j}\right]=i c_{i j k} J_{k}$ (sum over k implied), where J_{i} 's are the generators and $c_{i j k}$ are called the structure constants of the given Lie group.
(a) [5 points] Show that if J_{i} 's are Hermitian, then $c_{i j k}$ must be real numbers.
(b) [6 points] For the $S O(3)$ group, use the explicit 3-dimensional matrix representations of the J_{i} 's discussed in class to show that $c_{i j k}=\varepsilon_{i j k}$ (Levi-Civita tensor).
(c) [9 points] Use the orbital angular momentum operator in quantum mechanics: $\boldsymbol{L}=-i \hbar \boldsymbol{x} \times \boldsymbol{\nabla}$ to show explicitly that $\left[L_{i}, L_{j}\right]=i \varepsilon_{i j k} L_{k}$, i.e. we can identify the 3 generators of $S O(3)$ with the x, y, z components of the orbital angular momentum.
(d) [5 points] Given the ladder operators $J_{ \pm}=J_{x} \pm i J_{y}$, use the result from part (b) to find the commutation relations $\left[J_{z}, J_{ \pm}\right],\left[J_{+}, J_{-}\right]$and $\left[J_{i}, \boldsymbol{J}^{2}\right]$.

3. Clebsch-Gordan Coefficients:

(a) [10 points] For an electron in a hydrogen atom with orbital angular momentum quantum number $l=1$, what are the possible total angular momentum quantum number j values? Work out the relevant Clebsch-Gordan coefficients.
(b) [5 points] For the electron in the $\left|j=3 / 2, j_{z}=1 / 2\right\rangle$ state, what is the probability of finding it with the z-component of $\operatorname{spin} s_{z}=1 / 2$?

