PHYSICS 474: Introduction to Particle Physics

Homework 2

Due: noon Friday, Feb 2, 2018

1. Mandelstam variables: In a two-body scattering process $A+B \rightarrow C+D$, it is convenient to define the Lorentz invariants, called the Mandelstam variables,

$$
\begin{equation*}
s \equiv \frac{\left(p_{A}+p_{B}\right)^{2}}{c^{2}}, \quad t \equiv \frac{\left(p_{A}-p_{C}\right)^{2}}{c^{2}}, \quad u \equiv \frac{\left(p_{A}-p_{D}\right)^{2}}{c^{2}} \tag{1}
\end{equation*}
$$

(a) [5 points] Show that $s+t+u=m_{A}^{2}+m_{B}^{2}+m_{C}^{2}+m_{D}^{2}$.
(b) [5 points] Show that the total center-of-mass energy $E_{\text {tot }}^{\mathrm{CM}}=\sqrt{s} c^{2}$.
(c) [10 points] For elastic scattering of identical particles, $A+A \rightarrow A+A$, show that

$$
\begin{equation*}
s=\frac{4\left(\mathbf{p}^{2}+m^{2} c^{2}\right)}{c^{2}}, \quad t=\frac{-2 \mathbf{p}^{2}(1-\cos \theta)}{c^{2}}, \quad u=\frac{-2 \mathbf{p}^{2}(1+\cos \theta)}{c^{2}} \tag{2}
\end{equation*}
$$

where \mathbf{p} is the CM momentum and θ is the scattering angle.

2. Unitary and Hermitian matrices:

(a) [4 points] Prove the matrix identity: $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{Tr} A}$ for any matrix A.
(b) [4 points] Show that any $n \times n$ unitary matrix U can be written as $U=e^{i H}$, where H is a $n \times n$ Hermitian matrix.
(b) [2 points] Show that if $U \in S U(n)$, i.e. if $\operatorname{det} U=1$, then $\operatorname{Tr} H=0$.

3. Useful identities for Pauli matrices:

(a) $[10$ points $]$ For any two vectors \mathbf{a} and \mathbf{b}, show that $(\boldsymbol{\sigma} \cdot \mathbf{a})(\boldsymbol{\sigma} \cdot \mathbf{b})=\mathbf{a} \cdot \mathbf{b}+i \boldsymbol{\sigma} \cdot(\mathbf{a} \times \mathbf{b})$, where $\boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ and $\sigma_{1,2,3}$ are the usual 2×2 Pauli matrices.
(b) [10 points] An element of $S U(2)$ can be written as $U(\theta)=e^{i(\boldsymbol{\theta} \cdot \boldsymbol{\sigma}) / 2}$. Using the result of (a), show that

$$
\begin{equation*}
U=\cos \frac{\theta}{2} \mathbb{I}+i(\hat{\boldsymbol{\theta}} \cdot \boldsymbol{\sigma}) \sin \frac{\theta}{2}, \tag{3}
\end{equation*}
$$

where \mathbb{I} is the 2×2 identity matrix, θ is the magnitude of $\boldsymbol{\theta}$ and $\hat{\boldsymbol{\theta}} \equiv \boldsymbol{\theta} / \theta$ is the unit vector in the $\boldsymbol{\theta}$-direction.

