PHYSICS 474: Introduction to Particle Physics

Homework 11

Due: noon Friday, April 20, 2018

Electron-Proton Scattering: In this problem, you will fill in the intermediate steps in the elastic electron-proton scattering calculation discussed in class. Please refer to your class notes for details.
(a) $[10$ points $]$ Show that $q_{\mu} K^{\mu \nu}=0$, where

$$
\begin{equation*}
K^{\mu \nu}=-K_{1} g^{\mu \nu}+\frac{K_{2}}{(M c)^{2}} p^{\mu} p^{\nu}+\frac{K_{4}}{(M c)^{2}} q^{\mu} q^{\nu}+\frac{K_{5}}{(M c)^{2}}\left(p^{\mu} q^{\nu}+q^{\mu} p^{\nu}\right) \tag{1}
\end{equation*}
$$

describes the photon-proton vertex, M is the proton rest-mass, and p^{μ}, q^{μ} are the 4-momenta of the incoming proton and virtual photon, respectively.
(b) [10 points] Show that in Eq. (1), not all K 's are linearly independent, i.e.

$$
\begin{equation*}
K_{4}=\frac{(M c)^{2}}{q^{2}} K_{1}+\frac{1}{4} K_{2}, \quad \text { and } \quad K_{5}=\frac{1}{2} K_{2} \tag{2}
\end{equation*}
$$

(c) [10 points] Show that in the lab frame, ignoring the electron mass, we have

$$
\begin{align*}
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle & =\frac{g_{e}^{4} c^{2}}{4 E E^{\prime} \sin ^{4} \frac{\theta}{2}}\left(2 K_{1} \sin ^{2} \frac{\theta}{2}+K_{2} \cos ^{2} \frac{\theta}{2}\right), \tag{3}\\
\text { and } \quad E^{\prime} & =\frac{E}{1+\frac{2 E}{M c^{2}} \sin ^{2} \frac{\theta}{2}}, \tag{4}
\end{align*}
$$

where E, E^{\prime} are the energies of the incoming and outgoing electrons respectively, and θ is the scattering angle.
(d) [10 points] Using Eq. (3) and the general formula for differential cross section discussed earlier, derive the Rosenbluth formula

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\left(\frac{\alpha \hbar}{4 M E \sin ^{2} \frac{\theta}{2}}\right)^{2} \frac{2 K_{1} \sin ^{2} \frac{\theta}{2}+K_{2} \cos ^{2} \frac{\theta}{2}}{1+\frac{2 E}{M c^{2}} \sin ^{2} \frac{\theta}{2}} \tag{5}
\end{equation*}
$$

(e) [10 points] Show that for a 'point-like' proton, the form factors are simply given by

$$
\begin{equation*}
K_{1}=-q^{2}, \quad K_{2}=(2 M c)^{2} \tag{6}
\end{equation*}
$$

This is a pretty good approximation at low energies $\left(E \ll M c^{2}\right)$.

