PHYSICS 474: Introduction to Particle Physics

Final Exam
Max. Points: 100
May 9, 2018
Max. Time: 2 hours

1. (a) [2.5 points] Given that the ground-state binding energy of hydrogen is 13.6 eV , what would it be for positronium ($e^{+} e^{-}$bound state)?
(b) [2.5 points] The deuteron has mass of $1875.6 \mathrm{MeV} / c^{2}$ and binding energy of 2.2 MeV . Can we use Schrödinger's equation to describe the energy levels of the deuteron system?
(c) [5 points] What is the degeneracy of the nth energy level for the hydrogen atom? Why is this different from the expectation based on spherical symmetry alone?
(d) [5 points] Why the π^{0} (which mostly decays to two photons) has a lifetime 9 orders of magnitude smaller than its charged siblings $\pi^{ \pm}$(which mostly decay to muons and neutrinos)?
(e) [5 points] Why the $\pi^{-} \rightarrow \mu^{-}+\bar{\nu}_{\mu}$ decay rate is almost 10,000 times larger than the $\pi^{-} \rightarrow e^{-}+\bar{\nu}_{e}$ decay rate?
2. (a) [10 points] Using the meson mass formula

$$
\begin{equation*}
M_{\mathrm{meson}}=m_{1}+m_{2}+A \frac{\mathbf{S}_{1} \cdot \mathbf{S}_{2}}{m_{1} m_{2}} \tag{1}
\end{equation*}
$$

calculate the mass splitting between the pseudoscalar π and vector ρ mesons. You can use $m_{u}=m_{d}=308 \mathrm{MeV} / c^{2}$ for the constituent quark masses and $A=\left(2 m_{u} / \hbar\right)^{2} 159$ MeV / c^{2} for the constant in Eq. (1).
(b) [10 points] Using the baryon mass formula

$$
\begin{equation*}
M_{\mathrm{baryon}}=m_{1}+m_{2}+m_{3}+A^{\prime}\left[\frac{\mathbf{S}_{1} \cdot \mathbf{S}_{2}}{m_{1} m_{2}}+\frac{\mathbf{S}_{2} \cdot \mathbf{S}_{3}}{m_{2} m_{3}}+\frac{\mathbf{S}_{1} \cdot \mathbf{S}_{3}}{m_{1} m_{3}}\right] \tag{2}
\end{equation*}
$$

calculate the mass splitting between the $j=3 / 2$ (decuplet) Δ-baryons and $j=1 / 2$ (octet) nucleons. You can use $m_{u}=m_{d}=363 \mathrm{MeV} / c^{2}$ for the constituent quark masses and $A^{\prime}=\left(2 m_{u} / \hbar\right)^{2} 50 \mathrm{MeV} / c^{2}$ for the constant in Eq. (2).
3. (a) [10 points] Using the Feynman rules for strong interaction, write down the QCD matrix element for the process $d+\bar{u} \rightarrow d+\bar{u}$.
(b) [10 points] Calculate the color factors for the $d \bar{u}$ scattering matrix for any of the octet configurations and also for the singlet configuration.
(c) [5 points] What do you infer from the above results for the QCD potential describing the $q \bar{q}$ interaction?
4. (a) [10 points] Using the Feynman rules for weak interaction, write down the matrix element for the muon decay: $\mu^{-} \rightarrow e^{-}+\bar{\nu}_{e}+\nu_{\mu}$.
(b) [10 points] Using Casimir's trick and the trace identities, show that the spinaveraged squared matrix element from part (a) is

$$
\begin{equation*}
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=2\left(\frac{g_{w}}{M_{W} c}\right)^{4}\left(p_{1} \cdot p_{2}\right)\left(p_{3} \cdot p_{4}\right) \tag{3}
\end{equation*}
$$

where $p_{1}, p_{2}, p_{3}, p_{4}$ are respectively the 4 -momenta of the muon, electron, muon neutrino and electron anti-neutrino.
(c) [10 points $]$ Show that in the rest frame of the muon and neglecting the electron mass, Eq. (3) can be written as

$$
\begin{equation*}
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle \simeq\left(\frac{g_{w}^{2} m_{\mu}}{M_{W}^{2} c}\right)^{2}\left|\mathbf{p}_{2}\right|\left(m_{\mu} c-2\left|\mathbf{p}_{2}\right|\right) \tag{4}
\end{equation*}
$$

(d) [5 points] What are the minimum and maximum values of $\left|\mathbf{p}_{2}\right|$ in terms of the muon mass and electron energy?

