
Circularly Constrained Motion
Chapter N7

October 25th, 2017



Announcements

▶ Regrade requests: If you think a grading error has occurred,
give the exam to me with an explanatory note attached to the
front. Be sure to give your specific reasons for the request.

▶ All regrade requests are subject to having the entire exam
regraded, meaning your score may increase, decrease, or stay the
same.

▶ Regrade requests for Exam 1 must be turned in to me no later
than the end of class on Friday October 27th.



Chapter N7: Key Ideas

▶ Continuing “forces from motion” by looking at motion
constrained to a circle

▶ This extends our work on uniform circular motion (chapter N1)
to cover cases in which the object moves in a circle with
non-constant speed

▶ This chapter lays important foundations for chapters N10 and
N11.
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Uniform Circular Motion

Goal: Understand better (mathematically) uniform circular motion so
we can discuss nonuniform circular motion.

From last time:

|⃗a| = |v⃗|2

R

In problems of uniform circular motion, we are often given the time T
that it takes to go once around the circle, instead of the object’s speed.
In time T the object travels 2πR, so if its speed is constant:

|v⃗| = 2πR

T
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Unit Vectors

▶ A unit vector is a shorthand description of a pure direction (a
unit vector is also called a directional).

▶ A unit vector x̂ should be read “in the +x direction”.
▶ v⃗ = −(2.0 m/s)x̂ is a velocity vector with magnitude 2.0 m/s

pointing in the −x direction.
▶ In column-vector form we’d write this vector:vxvy

vz

 =

−2.0 m/s
0
0

 = (−2.0 m/s)

10
0


▶ The [1; 0; 0] column vector is just x̂.
▶ Most importantly, a unit vector has a magnitude (length)

equal to 1.
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Unit Vectors

▶ A unit vector that indicates the direction of some arbitrary vector
u⃗ can be constructed:

û ≡ u⃗

|u⃗|

▶ For circular motion it is useful to define the unit vector:

r̂ ≡ r⃗

|r⃗|

where r⃗ is the position vector of a certain point relative to some
specified origin. The unit vector r̂ at an arbitrary point indicates
the direction “directly away from the origin” at that point.

▶ For uniform circular motion, the origin is the circle’s center. The
acceleration of an object in uniform circular motion can be
written:

a⃗ = −|v⃗|2

R
r̂ (minus sign means a⃗ is toward circle’s center)
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Nonuniform Circular Motion

Moore’s derivation of acceleration in nonuniform circular motion
using vectors.

We will derive this in a different way using calculus.
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Nonuniform Circular Motion

a⃗ =
d|v⃗|
dt

v̂ − |v⃗|2

R
r̂

The first term is due to the change in speed so the acceleration
associated with this term is in the direction of v⃗.

The direction of the second term we derived previously: towards the
center of the circle. Because we define r̂ to be increasing away from
the center of the circle, we need to include a minus sign.



Nonuniform Circular Motion

a⃗ =
d|v⃗|
dt

v̂ − |v⃗|2

R
r̂

For motion in a circle:
1. v̂ ⊥ r̂

2. The magnitude of a⃗ is:

|⃗a| =

√(
dv

dt

)2

+

(
v2

R

)2

=
√

|⃗av|2 + |⃗ar|2

3. If the speed v does not change: a⃗ = −(v2/R)r̂ = −ω2Rr̂
(uniform circular motion)

4. Note the following three cases…









Two-Minute Problem

A pendulum bob swings from the end of a string. At point 1, the bob
is at the extreme point of the swing and thus is instantaneously at rest.
At point 3, the bob is directly below its suspension point and has its
maximum speed.
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A pendulum bob swings from the end of a string. At point 1, the bob
is at the extreme point of the swing and thus is instantaneously at rest.
At point 3, the bob is directly below its suspension point and has its
maximum speed.

D: The bob’s speed is zero at point 1, so its acceleration is due to
dv/dt which is pointed closest to D.
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A pendulum bob swings from the end of a string. At point 1, the bob
is at the extreme point of the swing and thus is instantaneously at rest.
At point 3, the bob is directly below its suspension point and has its
maximum speed.

E: It’s speed is nonzero and increasing, so one component of a⃗
points along the string, another points tangent to the blue dotted line.
The sum of these two is E.
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Two-Minute Problem

A pendulum bob swings from the end of a string. At point 1, the bob
is at the extreme point of the swing and thus is instantaneously at rest.
At point 3, the bob is directly below its suspension point and has its
maximum speed.

F: It’s speed is nonzero (one component of a⃗ points along the string)
and is at a maximum (just increasing before 3, just decreasing after 3)
so dv/dt = 0. Therefore the only component is along the string: F.
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Circular Motion Example: Banking

A turning airplane accelerates toward the center of the circle defined
by the turning radius. It’s engines can’t pivot! Tilting the wings at an
angle θ so that the lift force creates a component of the lift force
towards the circle center, but the vertical component must still support
the plane’s weight!



Circular Motion Example: Banking

What is the jet’s banking angle?

−m|v⃗|2/R
0
0

 = ma⃗ = F⃗g + F⃗L =

 0
0

−m|⃗g|

+

−|F⃗L| sin θ
0

|F⃗L| cos θ





Circular Motion Example: Banking

What is the jet’s banking angle?

m|v⃗|2

R
= |F⃗L| sin θ m|⃗g| = |F⃗L| cos θ

Dividing these equations:

|v⃗|2

R|⃗g|
= tan θ → θ = tan−1

(
|v⃗|2

R|⃗g|

)



Car Banking

A car doesn’t need to bank: the road exerts a static friction force on
the tires to the left. But on a properly banked roadway, the car can use
the leftward component of the normal force for the acceleration (safer
under bad road conditions).
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Solving Circularly Constrained Motion Problems

▶ Banking angle problems (like the airplane example) look like
there are too many unknowns. Look to see if these unknowns
divide out.

▶ Choose one axis so that it points along the line connecting the
object to the center of its circular path

▶ Because r̂ and v̂ keep changing as the object moves, your
coordinate axes will only be useful for one instant
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Example Problem N7M.8

You are riding in a 1650-kg car and approach a curve in the road with
radius of 50 m. The roadbed is banked inward at a 10◦ angle.

▶ (a) Suppose the road is very icy, so that the coefficient of static
friction is essentially zero. What is the maximum speed at which
you can go around the curve?

▶ (b) Now suppose the road is dry and that the static friction
coefficient between the tires and the asphalt road is 0.6. What is
the max speed at which you can safely go around the curve?
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Demo: Loop-the-Loop

A ball of massm and radius r starts at rest at the top of a hill of height
H , rolls down the hill, and then goes around a vertical loop of radius
R.

What is the minimumH for the ball to remain in contact with the
track when it reaches the top of the loop (i.e. complete the loop
without falling)?
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Demo: Loop-the-Loop

A ball of massm and radius r starts at rest at the top of a hill of height
H , rolls down the hill, and then goes around a vertical loop of radius
R.

What is the minimumH for the ball to remain in contact with the
track when it reaches the top of the loop (i.e. complete the loop
without falling)?

R = 21 cm, Hmin,sphere = 2.7R = 56.7 cm,
Hmin,sliding = 2.5R = 52.5 cm
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