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ABSTRACT OF THE DISSERTATION

E�ects of Short-Range Correlations on � Decay in Nuclear Matter

by

Neil Joseph Robertson

Doctor of Philosophy in Physics

Washington University in St. Louis, 2003

Professor Willem H. Dickho�, Chairperson

The e�ects of short-range correlations on the single-particle (sp) properties
of a lambda hyperon in nuclear matter are investigated within the Green's function
formalism. The calculated spectral function and quasi-particle parameters are quali-
tatively similar to those which have been observed for nucleons. The lambda spectral
function, calculated for a realistic hyperon-nucleon interaction, indicates that about
15% of the sp strength is removed from the quasi-particle region to higher energy as
a result of coupling to two-particle-one-hole states. This is compared to about 30%
for a nucleon at the Fermi momentum in a similar calculation. A strong coupling
between �N and �N states is known to be crucial for a correct determination of the
lambda sp spectrum and gives rise to threshold e�ects in the self-energy and spectral
function. It is also found to have a previously overlooked impact on the weak decay
width. The primary decay mode for the lambda hyperon in a dense nuclear medium
is a non-mesonic �N ! NN decay. A consistent treatment of short-range corre-
lations in the �N state, going beyond the customary use of a simple multiplicative
correlation function, leads to a substantial increase in the decay width. In particular,
it is observed that the �N ! NN decay channel rises to prominence on the strength
of the tensor coupling between �N and �N states. As a result, the contribution
to the decay width from the strong conversion to the �N state prior to subsequent
weak decay of the � increases the decay width by a factor of 2. This enhancement of
the pion mediated �N ! �N ! NN decay channel also limits the impact which a
consideration of strange meson exchange can have on the important �n=�p ratio.
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Chapter 1

Introduction

The ultimate goal of traditional nuclear physics is a fundamental theory describing

the observed properties of atomic nuclei in terms of the constituent nucleons and their

mutual interactions. There are two necessary ingredients for such a treatment; a char-

acterization of the internuclear forces and a prescription for treating the complexities

inherent in a system of many interacting particles. The strong interactions among

nucleons are known to be emergent aspects of a more fundamental interplay between

the constituent quarks and gluons of QCD. However, in the low-energy regime where

nucleons and mesons are the observed excitations of QCD, this theory is not yet able

to provide an adequate description of strong interactions. Instead, one constructs a

theory of strong interactions in terms of the applicable degrees of freedom (nucleons

and mesons). Such meson-exchange (and more generally, one-boson-exchange) inter-

actions, when constrained by �ts to low-energy nucleon-nucleon scattering, are a key

ingredient in the microscopic description of nuclei. The strength of the resulting two-

body interaction in turn implies the need for a non-perturbative many-body theory.

The diagrammatic techniques of Green's Function Theory (GFT) are utilized in this

work [1, 2].

When strangeness is considered, the entirely new branch of hypernuclear physics

is open for study. The lowest mass baryon with non-zero strangeness is the lambda

hyperon, essentially a heavy cousin of the neutron where a down quark has been

replaced by a strange quark. Although the lambda decays weakly, its free lifetime of

260 ps is long compared with time scales for strong processes. Low production rates

and short lifetimes for the hyperons make hyperon-nucleon (Y N) scattering experi-

ments diÆcult. Nucleon-nucleon (NN) scattering data must be used to supplement
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the available data for Y N scattering by invoking a broken SU(3) 
avor symmetry

in order to obtain a well constrained two-body interaction [3, 4, 5, 6, 7]. Limited

statistics in the Y N domain coupled with ambiguities in the application of SU(3)

symmetries allow for signi�cant variability in the structure of resulting Y N interac-

tions. Here a framework is developed in which the consequences of this variability for

physical observables can be studied. In this work, results are based on the Nijmegen

Soft-Core (NSC89) potential.

When a � hyperon is placed in nuclear matter it will interact with the nucleons

in its environment. As a result of these strong interactions, the lambda becomes

correlated with nucleons in the medium. These correlations can be accounted for

in the framework of the Green's function formalism and their e�ects on the single-

particle properties of the lambda explored. Among these e�ects is a net binding of

the lambda in nuclear matter, and in general a new distribution of spectral strength

as a result of Short-Range Correlations (SRC). Calculations of the lambda spectral

strength distribution will be reported for the �rst time in the present work. Similar

calculations of spectral functions have been performed for pure nuclear matter [8,

9, 10]. The addition of a strange test particle opens the door to comparisons with

spectral functions obtained for nucleons. The weaker Y N potential is expected to

result in similar but less extreme modi�cations to the spectral distribution. However,

the presence of the � hyperon also requires consideration of its heavier sibling, the

isospin one � hyperon. The two hyperons have a small enough mass di�erence that a

coupled channel problem must be solved. This is a change from the situation in pure

nuclear matter, where it is permissible to ignore the e�ect of the � isobar on nucleon

propagation at low energy. As a result of this channel coupling, new structure arises

in the lambda spectral function.

Ultimately, the fate of the lambda in the nuclear medium is a weak decay. For

heavy nuclei and their extrapolation to in�nite nuclear matter, the dominant decay

mode is the non-mesonic �N ! NN decay [11, 12, 13, 14]. This decay has been

studied by various authors both experimentally and theoretically. The handful of

decay observables (partial widths, asymmetries) have varying levels of sensitivity to

the particulars of �-N correlations. To date the experimental total decay width has

been reasonably well reproduced by a number of theoretical models, but a particular

ratio of partial decay channels, ��n!nn=��p!np; remains a puzzle. A number of
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theoretical models and experimental improvements have been suggested to resolve

this dilemma, with no satisfactory solution.

The strength of the present work lies in its detailed treatment of the strong

correlations experienced by a lambda during its brief lifetime of propagation in the

nuclear medium prior to decay. The GFT formalism allows e�ective weak interactions

incorporating the essential features of SRC to be constructed simply and consistently.

This focus on the e�ects of SRC in the �N initial state leads to consideration of a

decay mode which is typically overlooked in studies of lambda non-mesonic decay.

Inclusion of the strong �N ! NN decay mode serves to heighten sensitivity of the

lambda's non-mesonic decay parameters to SRC.

Chapter 2 lays out the formalism used in this work. The single-particle prop-

agator and spectral function are de�ned within GFT. Approximations to Dyson's

equation are discussed. Input potentials and particle spectra required for the calcu-

lation are presented.

Chapter 3 presents results for the lambda spectral function. A connection is

forged between the self-energy and the density of 2p1h states. Quasi-particle param-

eters are discussed and compared to what is found in the literature for the nucleon.

Structure at the �N threshold and the origin of the high energy tail to the spectral

function are brie
y discussed.

Chapter 4 begins discussion of the weak decay. A utilitarian approximation for

the non-mesonic decay width is presented. The pion-exchange potential is discussed

in order to derive matrix elements for �N
�! NN transitions. The in
uence of vertex

form factors is brie
y discussed.

Chapter 5 continues treatment of the weak decay. Simple correlation functions,

as typically found in the literature, are treated. Results for more complicated initial-

state correlations are then presented, including decays from intermediate �N states.

Decays of mesons heavier than the pion are discussed, with an emphasis on how they

impact the �n=�p ratio.

Finally, Chapter 6 o�ers some avenues for further pursuit of topics covered by,

and complementary to, this thesis.
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Chapter 2

Formalism

The propagator, also called the Green's function, characterizes the excitation spec-

trum of a particle (or hole) created on top of the many-body ground state. For the

purposes of this work, the many-body system is the ground state of Nuclear Matter

(NM) 1 and the test particle of interest is the � hyperon.

The propagator formalism possesses features which make it especially useful for

treating many-body systems consistently at various levels of approximation. Average

single-particle observables as well as two-particle (tp) correlations can be extracted

via the propagator formalism without the need to directly compute a many-body

wavefunction. Within the framework of this theory a hierarchy of approximations ex-

ist which describe the physics with successive degrees of sophistication. The Hartree-

Fock approximation is encompassed as well as other approximations more appropriate

for systems (such as nuclei) which possess highly collective excitations and/or exhibit

strong Short-Range Correlations (SRC).

2.1 The single-particle propagator

The single-particle (sp) propagator is de�ned by [2],

g(�; �; t� t0) � �ih N
0 j T [a�(t)ay�(t0)] j  N

0 i (2.1)

1An idealization of a real nucleus. The coulomb interaction is ignored, surface e�ects are ignored
and N=Z.
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where T is the time ordering operator and ay�(t
0) and a�(t) are, respectively, Heisen-

berg creation and annihilation operators. These operators act to create (destroy)

baryons on top of the exact N -body NM ground state, which is denoted by  N
0 ; and

is assumed normalized to unity. The dynamics is governed by a Hamiltonian, Ĥ.

Ĥ j  N
0 i = E0 j  N

0 i: (2.2)

For purposes of this work, the Hamiltonian may be considered as the sum of two

parts,

Ĥ � Ĥ0 + ĤI : (2.3)

The �rst term, Ĥ0; is a strictly one-body operator which may consist of optional sp

potentials for each baryon species in addition to the kinetic energy component. The

second term, ĤI ; incorporates any two-body interactions. It is assumed that NM at

saturation density is at suÆciently low density that three-body and higher forces are

weak [15]. The labels � and � on the creation (annihilation) operators of Eq. (2.1)

refer to the complete set of quantum numbers necessary for specifying the baryon sp

states. It is natural to choose these sp states to be eigenstates of Ĥ0;

Ĥ0 j �N� i = "� j �N� i: (2.4)

In the case of a �nite system, such as a real nucleus or hypernucleus, the kinetic

energy operator, T̂ ; does not share the natural spatial symmetry of the physical

system. Under these circumstances, it is important to include an appropriate sp

potential in the de�nition of Ĥ0 to ensure that the sp basis respects all important

physical symmetries. All calculations in this work are performed in NM, which poses

no particular symmetry constraint, so the choice of Ĥ0 = T̂ is suÆcient.

The origin of the term \propagator" becomes clear if Eq. (2.1) is rewritten as

g(�; �; t� t0) = �ih N
0 j eiĤta�e

�iĤ(t�t0)ay�e
�iĤt0 j  N

0 i�(t� t0)

+ ih N
0 j eiĤt0ay�e

�iĤ(t0�t)a�e
�iĤt j  N

0 i�(t0 � t); (2.5)

where a step function implementation of the time ordering operator has been intro-

duced as well as the explicit time dependence of the Heisenberg creation (annihilation)
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operators

a�(t) = eiĤta�e
�iĤt (2.6)

ay�(t
0) = eiĤt0ay�e

�iĤt0 : (2.7)

The �rst term of Eq. (2.5) may be analyzed as a series of events, each admitting a

simple physical interpretation. First, it should be noted that  N
0 already denotes a

very complex state of correlated nucleons. At time t, a particle in the sp state �

is added to this NM ground state. From t to t0, the system evolves according to

Ĥ. During this interval, the test particle propagates through the nuclear medium,

interacting with all of the constituent particles. As a result of these interactions, the

test particle will become correlated with the medium particles. This correlation takes

the form of a \dressing" as particle-hole excitations are induced. Finally, at time t0,

the overlap is taken between the correlated state which has evolved and a state in

which a particle has been added to the NM ground state in a sp state �. The second

term of Eq. (2.5) has a similar interpretation as the evolution of the NM groundstate

when a particle is removed (hole added).

2.1.1 The Lehmann representation

The propagator may be cast in a more convenient form by Fourier transforming to the

energy representation. To a�ect this transformation, complete sets of Hamiltonian

eigenstates for the N + 1 and N � 1 particle systems are introduced

Ĥ j  N+1
n i = EN+1

n j  N+1
n i (2.8)

Ĥ j  N�1
m i = EN�1

m j  N�1
m i (2.9)

as well as an integral representation of the step function

�(t� t0) = i
Z d!0

2�

e�i!
0(t�t0)

!0 + i�
: (2.10)

The resulting form of the propagator

g(�; �;!) =
X
n

h N
0 j a� j  N+1

n ih N+1
n j ay� j  N

0 i
! � (EN+1

n � EN
0 ) + i�
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+
X
m

h N
0 j ay� j  N�1

m ih N�1
m j a� j  N

0 i
! � (EN

0 � EN�1
m )� i�

(2.11)

is known as the Lehmann (or spectral) representation [16]. Excitation energies for

the particles and holes may be de�ned relative to the N particle ground state using

!0 � EN+1
n � EN

0 in the �rst term of Eq. (2.11) and !0 � EN
0 � EN�1

m in the second.

Specializing to the case of an in�nite number of particles, a speci�c choice of

basis is made. From this point forward, the sp states are taken to be eigenstates of

Ĥ0 = T̂ ;

j �i �j ~k sms tmti; (2.12)

and the label, �; will be shorthand for momentum, spin and isospin quantum numbers.

These states are also eigenstates of the full hamiltonian, Ĥ; and the symmetry of the

system makes the sp propagator diagonal on this basis,

g(�; �;!) = Æ��g(�; �;!) � Æ��g(�;!): (2.13)

The energy spectrum becomes continuous and the sums over states in Eq. (2.11)

become integrals, transforming Eq. (2.11) to

g(�;!) =
Z 1

"F
d!0

Sp(�;!
0)

! � !0 + i�
+
Z "F

�1
d!0

Sh(�;!
0)

! � !0 � i�
: (2.14)

The fermi energy, "F ; has been introduced in Eq. (2.14) as the lowest energy above

the ground state at which a particle may be added

"F � EN+1
0 � EN

0 � EN
0 � EN�1

0 : (2.15)

The spectral functions have also been introduced as

Sp(�;!
0) � j h N+1

n j ay� j  N
0 i j2

dn

d!0
(2.16)

Sh(�;!
0) � j h N�1

m j a� j  N
0 i j2

dm

d!0
(2.17)

for the particles and holes respectively. The factors dn=d!0 and dm=d!0 weight each

term according to the density of states at an excitation energy of !0. The particle

spectral function (Eq. (2.16)) denotes the probability density that a particle added
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to the NM groundstate,  N
0 ; in a sp state �; with an excitation energy !0; will be in

the nth eigenstate of the N + 1 particle system. Likewise, Eq. (2.17) describes the

corresponding situation where a particle is removed. As a probability density, the

spectral function is real and positive. A particle (hole) occupation number may be

de�ned for a state � as the integrated strength above (below) the fermi energy,

np(�) �
Z 1

"F
d!0Sp(�;!0) (2.18)

nh(�) =
Z "F

�1
d!0Sh(�;!0) (2.19)

The total spectral strength is normalized in such a way that

Z 1

�1
d!0S(�;!0) = np(�) + nh(�) = 1; (2.20)

which follows from the completeness of the energy eigenstates for the N+1 and N�1

particle systems and the anticommutation relations for the fermion operators,

fay�; a�g = Æ��: (2.21)

The standard integral relation,

1

x� i�
= P

1

x
� i�Æ(x); (2.22)

when applied to Eq. (2.14) yields the following algebraic relationship between the

imaginary part of the propagator and the spectral function

Im g(�;!) =

8<
: ��Sp(�;!) ! > "F

�Sh(�;!) ! < "F
: (2.23)

2.1.2 Example of a non-interacting particle

Unlike the general and strictly formal treatment performed to this point, an explicit

functional form for the propagator can be obtained for the special case of a non-

interacting particle. This example will further clarify the physical interpretation of

the sp propagator and motivate use of its spectral representation. The Hamiltonian

for the non-interacting system is simply Ĥ0; and its N particle groundstate will be

denoted by �N
0 , which is simply a Slater determinant of sp states �lled to a fermi
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level denoted by F . The propagator (Eq. (2.5)) in this case is

g0(�; �; t� t0) = �ih�N
0 j eiĤ0ta�e

�iĤ0(t�t0)ay�e
�iĤ0t0 j �N

0 i�(t� t0)

+ ih�N
0 j eiĤ0t0ay�e

�iĤ0(t0�t)a�e�iĤ0t j �N
0 i�(t0 � t): (2.24)

Using

Ĥ0 j �N
0 i = EN

0 j �N
0 i; (2.25)

Eq. (2.24) becomes

g0(�; �; t� t0) = �ie�iEN0 (t�t0)h�N
0 j a�e�iĤ0(t�t0)ay� j �N

0 i�(t� t0)

+ ie�iE
N
0
(t0�t)h�N

0 j ay�e�iĤ0(t0�t)a� j �N
0 i�(t0 � t): (2.26)

The great simpli�cation in this example of the non-interacting propagator occurs

because the state ay� j �N
0 i is an exact eigenstate of the N + 1 particle system;

Ĥ0a
y
� j �N

0 i = �(� � F )(EN
0 + "�)a

y
� j �N

0 i: (2.27)

Likewise, a� j �N
0 i is an eigenstate of the N � 1 particle system. This is not true for

the much richer and more complex case of a system of interacting particles. Using

Eq (2.21) and the fact that �N
0 is normalized to unity, the propagator reduces to the

compact form

g0(�; �; t�t0) = �iÆ���(��F )ei"�(t�t0)�(t�t0)+ iÆ���(F��)ei"�(t0�t)�(t0�t): (2.28)

The propagator of Eq (2.28) depends only on the energy of the sp state and is in-

dependent of details of the medium except for the presence of the Pauli �-function

which serves to distinguish between particle and hole states. Transforming to the

energy representation yields the simple expression

g0(�;!) =
�(�� F )

! � "� + i�
+

�(F � �)

! � "� � i�
: (2.29)

The poles of the sp propagator determine allowed excitation energies of the system

containing an additional particle (or hole). For the non-interacting case, g0(�;!)

contains only a simple pole at an excitation energy corresponding to the energy of
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= + ΣR

Figure 2.1: Dressed � propagator in terms of the reducible self-energy.

the sp state. The spectral function (Eq. (2.23)) for the non-interacting case is

S0
p(�;!) = �(�� F )Æ(! � "�) (2.30)

S0
h(�;!) = �(F � �)Æ(! � "�): (2.31)

Eq. (2.30) indicates, very intuitively, that a non-interacting particle may be added

to the medium in a sp state �; with unit strength, at an energy corresponding to

"�; and not at any other energy. The addition of strong interactions amongst the

particles, which induce correlations, changes this picture. The dressed propagator

will have a more complex analytic structure as a function of energy, which gives rise

to a correspondingly rich structure in the spectral function.

2.1.3 Dyson's equation

At this point, the propagator has been manipulated into a form (the Lehmann rep-

resentation) which permits a ready physical interpretation and will be useful for un-

derstanding the e�ects of interactions on the sp properties of a particle (or hole). It

remains to connect this formal expression to known quantities in a manner which ad-

mits a tractable calculation. This task is accomplished by performing a perturbative

expansion of the interacting propagator, Eq. (2.1), in terms of the explicitly known

form of the non-interacting propagator, Eq. (2.29). The result is an in�nite sum of

terms, including all orders in the interparticle interactions contained in ĤI [1]. The

in�nite series of terms in the propagator expansion is perhaps best visualized with

the aid of Feynman diagrams. The diagrams of Fig. 2.1 correspond to the equation
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g(�;!) = g0(�;!) + g0(�;!)�R(�;!)g0(�;!); (2.32)

and introduce the reducible self-energy, �R; which contains all of the interaction terms

which \dress" the test particle as it propagates through the medium. A representative

collection of the many parts which comprise the reducible self-energy is displayed in

Fig. 2.2. The diagrams may be divided into two classi�cations. The irreducible self-

energy, �, encompasses all diagrams which cannot be split into two pieces by breaking

a single propagator line (all except parts b and f of Fig. 2.2). The other diagrams are

really just iterations of the irreducible self-energy diagrams, and the entire propagator

expansion, Fig. 2.1, can be resummed, Fig. 2.3, in terms of the irreducible self-energy.

It is this compact expression in terms of the irreducible self-energy which is the direct

diagrammatic analog of

g(�;!) = g0(�;!) + g0(�;!)�(�;!)g(�;!); (2.33)

known as Dyson's equation.

Using the explicit form of the non-interacting propagator from Eq. (2.29), the

Dyson equation may be solved algebraically 2 to yield

g(�;!) =
1

! � "� � �(�;!)
: (2.34)

This formal solution can be separated into particle and hole pieces for comparison

with Eq. (2.29) for the non-interacting propagator,

g(�;!) =
�(�� F )

! � "� � �(�;!)
+

�(F � �)

! � "� � �(�;!)
: (2.35)

The only di�erence lies in the presence of the self-energy 3 which acts as an e�ective

one-body potential.

"� ! "� + �(�;!): (2.36)

The self-energy incorporates an in�nite number of terms, including all orders in the

two-body interaction. A truncation of the self-energy series at some �nite order in the

interaction is not a viable option for the strong interactions commonly used in nuclear

2This simpli�cation is a byproduct of working in an in�nite system where the irreducible self-
energy is diagonal on the sp basis. In general, Eq. (2.33) is a matrix equation.

3From this point forward, the term \self-energy" will implicitly refer to the irreducible self-energy.
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Figure 2.2: Representative collection of terms which comprise the reducible self-
energy.
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Figure 2.3: Propagator expansion in terms of the irreducible self-energy.
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Figure 2.4: Sampling of self-energy terms, expressed with dressed propagators.

physics. The individual terms may even be divergent if interactions with hard-cores

are used [17]. Instead, approximations are required which involve summing an in�nite

number of terms taken from those classes of diagrams deemed most important for a

given calculation. The proliferation of terms may be formally reduced by another

resummation, this time replacing all internal propagator lines with dressed propaga-

tors. This renormalization leaves only a few classes of diagrams in the expansion of

the self-energy (Fig. 2.4).

2.2 Approximations to the Dyson equation

Although the formalism developed to this stage may be applied to a more general

treatment, we specialize now to the case of a single � hyperon in NM. Hyperons are

treated as distinct species from the nucleons which comprise the medium, so there

can be no hole part to the hyperon propagator.

Every step to this point has been a formal manipulation of the propagator

expansion and no approximations have been made. At this stage, each term in Fig. 2.4

is examined to ascertain its role in describing the physics of the propagating �-particle.

2.2.1 The Hartree-Fock approximation

The �rst diagram of Fig. 2.4 is the Hartree-Fock (HF) contribution to the self-energy. 4

This diagram represents the equation,

�HF
� (�;!) =

X
�

Z 1

"F

d!0

2�i
h�� j V j ��ig#N(�;!0) (2.37)

4Typically, the HF approximation refers speci�cally to the case where the �rst term of Fig. 2.4
is the only one in the self-energy expansion. In this work, the term HF is used more generally even
when the hole line is dressed (correlated HF) or to refer to the HF contribution to the self-energy
in the presence of other terms.
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=
X
�

Z 1

"F
d!0h�� j V j ��iSh

N(�;!
0) (2.38)

=
X
�

h�� j V j ��inh(�): (2.39)

which may be simply interpreted as an average over the interactions between the �

and medium nucleons. A requirement of the bare Y N interaction is that it provide

a realistic description of free particle scattering at low energies (typically up to pion

production threshold). Such an interaction will be real, violently repulsive at short

range and moderately attractive at longer range. Matrix elements, taken on the

uncorrelated Y N basis, are on average repulsive. As a result, the HF self-energy will

be real and positive, acting as a repulsive mean-�eld potential which shifts the �

spectrum to

"HF
� (�) = t�(�) + �HF

� (�): (2.40)

This is not a realistic approximation in two respects.

1. Despite the strong repulsive core in realistic nuclear and hypernuclear potentials,

there is a net attraction, as evidenced by the existence of bound nuclei and

hypernuclei.

2. The HF approximation yields a real self-energy, which implies an Independent

Particle Model (IPM). Particles occupy sp states with in�nite lifetimes.

Despite its limitations, the HF approximation provides an intuitive method for gen-

erating a mean-�eld potential from a two-body interaction and is the simplest non-

trivial approximation which allows a self-consistent treatment of the many-body prob-

lem. The de�ciencies alluded to above can be overcome by replacing the bare two-

body interaction, V , with an e�ective interaction which is both complex and has a

real part which is on average attractive. An e�ective interaction which possesses these

necessary traits may be derived from the bare interaction by going beyond the HF

approximation as described in the next sections.

2.2.2 Rings and Ladders

The diagrams of Fig. 2.2 which follow the HF term (part a), are classi�ed as Ladder

diagrams (part c), Ring diagrams (part e) and diagrams which are a mixture of

Rings and Ladders (not pictured). The relative importance of the various diagrams



16

may be determined based on the ratio, a=r0; where a is the range of the repulsive

part of the interaction and r0 the average interparticle spacing. NM at saturation

density has a=r0 � 1=3 [1] and may be modeled as a low density, non-ideal Fermi gas.

Galitskii [18] has argued that for such a system, at each order of the bare interaction,

the diagrams with the fewest hole lines should dominate. For example, irreducible

third-order diagrams in Fig. 2.2 each have two additional propagator lines and one

more interaction line than the second-order diagrams. The third-order ring term (part

e of Fig. 2.2) has one additional particle line and one more hole line. The third-order

ladder term has two additional particle lines. Each propagator line implies an integral

over the phase space for a particle (k > kF ) or hole (k < kF ); appropriately weighted

by matrix elements of the interaction. Of course, the �nite phase space for a hole is

always less than the in�nite phase space for a particle. It is because the integrals are

weighted by matrix elements of the interaction that the combination kFa determines

the relative importance of particle and hole lines.

For high-density systems, such as the electron gas where the bare Coulomb

interaction has in�nite range, kFa >> 1; and particle-hole (ring) excitations dominate

over particle-particle (ladder) excitations. The sum of ring diagrams to all orders is

known as the Random Phase Approximation (RPA). For low-density systems like

NM, it is the particle-particle excitations which dominate and their sum to all orders

is called the Ladder Approximation (LA). To the extent that ring diagrams manifest

long-range correlations, it is inappropriate to include them in a NM calculation which

hopes to have relevance for �nite systems. This follows from the fact that the long-

range order in an in�nite system is fundamentally di�erent from that of a �nite

system. The e�ects of SRC, on the other hand, should be independent of scale and

geometry and so can reasonably be expected to carry over from calculation in in�nite

NM to application in �nite systems.

The series of Ladder diagrams de�nes an e�ective two-body interaction (Fig. 2.5a).

In the limit of zero density (the interaction of two free particles) this e�ective inter-

action is just the T -matrix of scattering theory. When a nuclear medium is present,

nucleon particle propagation is restricted to states above a Fermi level. If the in-

termediate particles are not dressed, then the e�ective, in-medium interaction is the

Brueckner G-matrix [19]. If the intermediate propagators are dressed, this generalized

version of the G-matrix will be called the �-matrix. Though the following discussion
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Figure 2.5: Ladder equation in terms of a) uncorrelated two particle propagator and
b) correlated two particle propagator.

applies equally to the more general case of the �-matrix, in this work, only the simpler

G-matrix form of e�ective interaction is used.

The Born series of ladder diagrams may be resummed in two ways (Fig. 2.5).

Part (a) of Fig. 2.5 leads to an integral equation for the G-matrix in terms of V and

the uncorrelated tp propagator. The particles in the intermediate state are separately

dressed by interactions with the medium, but are not correlated with each other. This

is the form of the G-matrix equation which will actually be solved in a subsequent

section. An alternative, but entirely equivalent, resummation leads to Fig. 2.5(b).

Here the G-matrix is expressed in terms of V and the correlated tp propagator. This

version of the Ladder equation is useful for elucidating an important analytic property

of the G-matrix. The diagrammatic expression of Fig. 2.5(b) represents

h�� j G(
) j ��i = h�� j V j ��i+ X
Æ
��

h�� j V j Æ
igIIcorr(Æ
; ��; 
)h�� j V j ��i:
(2.41)

The energy dependence is entirely contained in the correlated tp propagator. In direct

analogy with the sp propagator development which led from the de�nition of Eq. (2.1)



18

to the Lehmann representation of Eq. (2.14), a similar procedure yields

gIIcorr(Æ
; ��; 
) =
Z 1


min
d
0Spp(Æ
; ��; 


0)

� 
0 + i�

; (2.42)

as a Lehmann representation for the correlated tp propagator. The tp spectral density,

Spp(Æ
; ��; 

0) � h N

0 j aÆa
 j  N+2
n ih N+2

n j ay�ay� j  N
0 i

dn

d
0 (2.43)

has been introduced, much like the sp spectral function of Eq. (2.16). The analytic

structure of the correlated tp propagator mirrors that of the sp propagator in its

simplicity. In particular, the integral relation of Eq. (2.22) may be used to derive the

following dispersion relation

gIIcorr(Æ
; ��; 
) =
�1
�

Z 1


min
d
0 Img

II
corr(Æ
; ��; 


0)

� 
0 + i�

: (2.44)

Insertion of this expression for gIIcorr into Eq. (2.41) for the G-matrix yields

h�� j G(
) j ��i = h�� j V j ��i+ 1

�

Z 1


min
d
0 Imh�� j G(
0) j ��i


� 
0 + i�
(2.45)

as a dispersion relation for the G-matrix. This indicates that only the imaginary

part of the G-matrix need be calculated directly (albeit for all energies) in order

to completely determine the full G-matrix. Another way to view Eq. (2.45) is as a

consistency check on the numerical calculation of the G-matrix.

The lambda self-energy in the LA may be compactly represented as in Fig. 2.6b.

This may be compared to the HF approximation (�rst term in Fig. 2.4). The self-

energy may still be thought of as an e�ective potential for the lambda generated by

its average interaction with the nucleons. The di�erence is that the bare interaction

is now replaced by the G-matrix e�ective interaction. The G-matrix is complex and

energy dependent, satisfying the list of desirable qualities mentioned previously for

an e�ective two-particle interaction (Section 2.2.1). In addition, it has the distinction

of being derived directly in terms of the bare interaction.
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The simplicity of the diagram (Fig. 2.6b) expressing the self-energy in terms of

the G-matrix re
ects a simple mathematical relationship between the two functions:

��(�;!) =
X
�

Z 1

"F

d!0

2�i
h�� j G(! + !0) j ��ighN(�;!0); (2.46)

= �
X
�

Z 1

"F
d!0h�� j G(! + !0) j ��iSh

N(�;!
0): (2.47)

The spectral representation of the nucleon hole propagator, Eq. (2.14), was used to

obtain the �nal expression of Eq. (2.47). Similar to the HF case, Eq. (2.39), the self-

energy in the LA is just a convolution of the e�ective interaction with the spectral

density of occupied nucleon states. Just as the G-matrix satis�es a dispersion relation,

so too does the self-energy. Inserting Eq. (2.45) into Eq. (2.47) yields,

��(�;!) = �
X
�

Z 1

"F
d!0h�� j V j ��iSh

N(�;!
0)

+
Z 1

!min
d!0

Im��(�;!)
0

! � !0 + i�
(2.48)

��(�;!) = �HF
� (�;!) + ���

� (�;!): (2.49)

2.3 Input to calculation

Having chosen the LA as a physically suitable approximation to Dyson's equation,

Fig. 2.6, the framework is set for calculation of the lambda propagator. Now it is

necessary to consider what inputs are required to explicitly de�ne the calculation.

2.3.1 Bare Y N and NN interactions

A major ingredient necessary for this work is the two-body interaction which describes

the scattering of hyperons and nucleons. The 1989 version of the Nijmegen Soft-

Core (NSC89) meson exchange potential is used [6]. This potential is the Fourier

transformable, soft-core descendant of the hard-core Nijmegen D and F models [3, 4,

5]. 5 In the microscopic spirit of this work, it is based on the exchange of strange

and non-strange pseudoscalar (�, �, �) and vector (�, !, ��) mesons. Though �t

5Since this work began, the NSC89 potential has been superseded by a family of potentials:
NSC97 versions a-f [7].
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Figure 2.6: Diagrammatic representation of Dyson's equation in the Ladder approx-
imation.
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to available Y N scattering data, the scarcity of such data demands a heavy reliance

on SU(3) symmetries to relate poorly determined Y N coupling constants to their

better known NN relatives. As with all potentials of this type, the NSC89 is �t

to low-energy data and its core structure is not well determined. Results which

depend on the short-range behavior of the potential will re
ect this de�ciency but are

consequently of interest as well, if they can be related to experimentally accessible

quantities.

In this work comparisons are made to nucleon spectral functions derived from

calculations involving the Reid Soft-Core (RSC) potential [20].

2.3.2 Nucleon propagator

The dressed nucleon hole and particle propagators appear in the self-energy equation

(Fig. 2.6b) and the G-matrix equation (Fig. 2.6c) as external parameters. In princi-

ple, the dressed nucleon propagator should be determined from a coupled system of

equations similar to those depicted in Fig. 2.6. The program to self-consistently calcu-

late a nucleon propagator in NM began with Goldstone's application of diagrammatic

techniques to the work of Brueckner and is ongoing [21]. In this work, the calculation

is carried through with non-interacting nucleons.

2.3.3 � hyperon propagator

The � hyperon has been introduced as part of a possible Y N intermediate state in

the G-matrix equation (Fig. 2.6c). Its inclusion is necessitated by the relatively small

mass di�erence of 77 MeV between the � and �. This results in a signi�cant coupling

between �N and �N intermediate states which cannot be ignored. Experimentally,

the � is bound in heavy hypernuclei by about 10 MeV [22, 23, 11]. Compared with sp

potential well depths of approximately 30 MeV for the � and 75 MeV for the nucleon

in NM, the � interacts relatively weakly with the nuclear medium. For this reason,

it is not too poor of an approximation to treat the � as a non-interacting particle as

is done in this work.

g�(�;!)! g0�(�;!): (2.50)
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2.4 Self-consistency of the � propagator

At this point it should be noticed that although the propagator has a formal solution

in terms of the self-energy, the self-energy depends internally on the dressed prop-

agator. This means that Fig. 2.6 depicts a non-linear coupled system of equations

for the dressed � propagator. The natural starting point is to make the zeroth order

approximation

g�(�;!)! g0�(�;!): (2.51)

Given this choice of initial � propagator, the G-matrix, self-energy, and next gener-

ation propagator may be calculated in turn. Ideally, we would now like to use this

new propagator, g
(1)
� (�;!), as input to the G-matrix equation and iterate until a self-

consistent solution is obtained. Examination of Eq. (2.35) reveals that the energy

dependence of the dressed propagator is much more complicated than that of the

free propagator, Eq. (2.29). In fact, this is already true for g
(1)
� (�;!), which has an

analytic structure similar to that of the fully self-consistent propagator, even after

only one iteration. A simpli�ed iteration scheme is used instead.

Breaking up the self-energy into its real and imaginary parts, Eq. (2.35) for

the dressed propagator can be rewritten as:

g�(�;!) =
1

[! � t�(�)� Re ��(�;!)]� i[Im ��(�;!)]
: (2.52)

Comparing this to the form of the free propagator, Eq. (2.29), it can be seen that

the real part of the self-energy plays the role of an energy-dependent potential. This

observation motivates the de�nition of a new energy spectrum:

"
(1)
� (�) = t�(�) + Re ��(�; "

(1)
� (�)): (2.53)

This new spectrum, which will later be identi�ed as the quasi-particle (qp) energy

spectrum, is inserted in place of the kinetic energy spectrum in Eq. (2.29), to de�ne

a new propagator

g
(1)
� (�;!)! ~g

(1)
� (�;!) � 1

! � "
(1)
� (�) + i�

: (2.54)
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In this way, the same simple analytic structure is always used for the lambda prop-

agator in the G-matrix equation, and only the spectrum changes from iteration to

iteration. The iteration procedure is continued until a self-consistent lambda spec-

trum is obtained:

"
(n+1)
� (�) = "

(n)
� (�): (2.55)

It is important to calculate such a consistent spectrum in order to ensure that the

�nal spectral function is a continuous function of energy.

2.4.1 Spectral Function

The spectral function is calculated from the imaginary part of the dressed propagator,

Eq. (2.52), using the expression of Eq. (2.23).

Sp
�(�;!) =

1

�

j Im �
(s)
� (�;!) j

[! � t�(�)� Re �
(s)
� (�;!)]2 � i[Im �

(s)
� (�;!)]2

: (2.56)

The self-energy bears an `s' superscript to denote the fact that it is calculated using a

self-consistent lambda spectrum. It should be emphasized that the spectral function

of Eq. (2.56) is not truly self-consistent due to the simplifying approximation of

Eq. (2.54).

A qp energy is de�ned as,

"qp� (�) = t�(�) + Re �(s)
� (�; "qp� (�)): (2.57)

If the self-energy is only weakly energy dependent in the neighborhood of the qp

energy, then it is evident from Eq. (2.56) that the spectral function will have a peak

near ! = "qp� (�). Expanding the self-energy about "qp� (�) as

Re �qp
� (�;!) � Re �

(s)
� (�; "qp� (�)) +

@Re �
(s)
� (k; "qp� (�))

@!
(! � "qp(k)); (2.58)

Im �qp
� (�) � Im �

(s)
� (�; "qp� (�)); (2.59)
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yields the Quasi-Particle Approximation (QPA) to the spectral function. We de�ne

the following two functions

z(�) � 1� [
@Re �

(s)
� (�;!)

@!
]�1; (2.60)


(�) � z(�) j Im �qp
� (�) j; (2.61)

and make use of Eq. (2.57) to cast the QPA of the spectral function explicitly in the

form of a lorentzian

Sp
�(�;!) =

1

�

z(�)
(�)

[! � "qp� (�)]
2 + [
(�)]2

: (2.62)

Further details required to facilitate actual numerical work are included in

Appendix A. Results for the � spectral function and qp-parameters are presented

and discussed in the next chapter.
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Chapter 3

E�ects of Strong Correlations on

Lambda Propagation in Nuclear

Matter

In this chapter several aspects of the propagation of a � hyperon in nuclear matter

are presented. In Section 3.1 the lambda spectral function is interpreted physically as

a single-particle strength distribution in momentum and energy. Departure from the

simple form expected for a free particle is discussed in terms of a strong coupling be-

tween 1p and 2p1h states through the self-energy. Details of how various populations

of 2p1h states contribute to the imaginary part of the self-energy are examined by

separating purely phase space factors from the G-matrix elements which e�ectively

couple the states. These G-matrix elements are further dissected in an attempt to

tease apart the strongly coupled channels which give rise to the complicated structure

observed in the lambda self-energy.

In Section 3.2 quasi-particle parameters for the lambda are discussed and a

simple model connecting them to the gross properties of the imaginary part of the

self-energy is presented. Comments are made about the realm of accuracy for this

approximation for the lambda. A comparison is made with similar quasi-particle

results for the nucleon in nuclear matter as well as the saturation of spectral strength

as a function of energy.

In Section 3.3 threshold e�ects associated with the �N channel are brie
y

discussed.

Finally, in Section 3.4 spectral strength at high energy is discussed.
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3.1 Introduction: The � Spectral Function

From the de�nition of the spectral function in Eq. (2.16), the expression

ay~kj	(E0)i (3.1)

has a physical interpretation as the state resulting from addition of a lambda with

quantum numbers, ~k, to the NM ground state. By de�nition, this represents a product

state of a lambda sp state and the correlated NM ground state. This will not be an

eigenstate as long as there are �N interactions present in the Hamiltonian. The

actual energy eigenstates of the composite system of a lambda in NM are denoted by

j�	(E)i: (3.2)

The sp spectral function (Fig. 3.1) involves the overlap between the simple physical

state of Eq. (3.1) and the complicated eigenstate of Eq. (3.2). The extent to which

there is overlap illustrates how well the lambda sp state survives intact in the medium.

For the case of no interactions between the lambda and the nucleons, the overlap is

perfect, since the state of Eq. (3.1) is an eigenstate in this situation. This is evidenced

by the delta-function spectral distribution appropriate for a free particle, as indicated

by a dashed line at the kinetic energy in Fig. 3.1. Interactions between the lambda and

nucleons are responsible for the transition from the simple delta-function structure

to the more complex distribution of sp strength realized in NM. The mechanism

behind the spreading of sp strength can be understood as the mixing of a 1p state

at a given energy with 2p1h states which span a continuum of energies (Fig. 3.2).

Although the sp state is no longer an eigenstate of the many-body Hamiltonian, its

quantum numbers, such as total spin, isospin and momentum, are still conserved

by the interaction. The total strength associated with the original sp state, though

fragmented, is �xed. This is re
ected in the sum rule of Eq. (2.20). Details of the

strength distribution are determined by the density of 2p1h states (Fig. 3.2b) and

the strength with which the interaction couples them to the unperturbed sp state

(Fig. 3.2a). This information is summarized in the imaginary part of the self-energy,

Fig. 3.3.
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Figure 3.1: Spectral function for a lambda with k = 100 MeV/c. The vertical dashed
line indicates the position of a delta-function spectral distribution for the limiting case
of a free particle. Because of the 30 MeV binding for a lambda in nuclear matter, it
is convenient to shift the horizontal axis by 40 MeV for plotting on a log scale.
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(a) (b)

Figure 3.2: a. A free � occupies a sp state at a �xed energy. b. The �N interaction
permits coupling to intermediate 2p1h states which span a range of energies, the
density of states increasing with energy as schematically shown.



29

10
1

10
2

10
3

10
4

10
5

ω + 40 (MeV)

−80

−60

−40

−20

0

Im
 Σ

Λ
(k

;ω
) (

M
eV

)

Figure 3.3: Imaginary part of lambda self-energy for k = 100 MeV/c. The broken
curves represent contributions to the overall self-energy from the 3S1 (dash) and

1S0
(dot) partial wave channels.
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=

Figure 3.4: Diagrammatic representation of Eq. (3.4). Note that this equality only
holds for the imaginary part of each side of the expression [24].

3.1.1 Relationship between Im � and density of 2p1h states

As shown in Eq. (2.47), the self-energy may be concisely expressed in terms of diagonal

elements of the G-matrix,

�(~k; !) /
Z kN

F

0
d3qNh~k~qN jG(! + "N(~qN ))j~k~qN i; (3.3)

where an appropriate single-particle basis has been introduced explicitly (A.1). The

imaginary part of these G-matrix elements may be expanded in terms of the uncor-

related two-particle propagator (Fig. 3.4),

Im h~k~qN jG(
)j~k~qN i /
Z 1

0
d3q1

Z 1

kN
F

d3q2jh~k~qN jG(
)j~q1~q2ij2

Im gIIunc(~q1; ~q2; 
): (3.4)

This type of result may also be used in scattering theory to obtain the Optical The-

orem [25]. In direct analogy to Eq. (2.14) for the sp propagator, the imaginary part

of the uncorrelated two-particle propagator is just the two-particle spectral function,

Im gIIunc(~q1; ~q2; 
) / Im
Z
d
0S

II
unc(~q1; ~q2; 


0)

� 
0 + i�

/ SII
unc(~q1; ~q2; 
): (3.5)

If particles in the intermediate state are not dressed by interactions with the medium

(as they would be in a fully self-consistent calculation), but rather are treated as free

particles, then

SII
unc(~q1; ~q2; 
) �! Æ(
� "2p(~q1; ~q2)) (3.6)
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and the two-particle spectral function reduces to a delta-function which picks out

states with total energy, 
. In this simpli�ed case, Eq. (3.4) becomes

Im �(~k; !) /
Z kN

F

0
d3qN

Z 1

0
d3q1

Z 1

kN
F

d3q2jh~pjG( ~Q;
)j~qij2Æ(! � "2p1h)

Æ(~k � [~q1 + ~q2 � ~qN ]); (3.7)

where

"2p1h � "Y (~q1) + "N(~q2)� "N(~qN): (3.8)

In the above, momentum conservation has been used to write the matrix elements of

the G-matrix as

h~k~qN jG(
)j~q1~q2i = Æ([~k + ~qN ]� [~q1 + ~q2])h~pjG( ~Q;
)j~qi; (3.9)

where ~q and ~p represent the relative momentum in the initial and �nal states respec-

tively and ~Q is the conserved total momentum.

Eq. (3.7) reveals a direct connection between Im �(~k; !) and the phase-space

for 2p1h states with momentum, ~k, and energy, !. Aside from a weighting supplied

by matrix elements of the e�ective interaction, the imaginary part of the self-energy

is directly proportional to the available 2p1h phase-space. For free, uncorrelated

particles, this phase-space essentially contributes a
p
! energy dependence to the

imaginary part of the self-energy.

Interactions with particles in the medium serve to dress the intermediate par-

ticles and thereby void the assumptions leading to Eq. (3.6). They complicate the

two-particle spectral function and typically lead to a diminished density of states at

low energy [26]. However, this doesn't substantially alter the physical interpretation

of Im � as expressed in Eq. (3.7). The imaginary part of the self-energy is still pro-

portional to a weighted 2p1h phase-space, only now the intermediate particles are

better thought of as quasi-particles.

For �xed parameters ~k and !, the G-matrix element appearing in Eq. (3.3)

varies slowly over the allowed range of ~qN . As a result, Eq. (3.3) may be well approx-

imated by taking an average G-matrix element and integrating over the phase-space

for nucleon holes,

�(k; !) / hk�qN jG(! + "N(�qN ))jk�qNi�N : (3.10)
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This indicates that the energy dependence of � is localized in a particular diagonal

matrix element of G. The phase-space for nucleon holes merely contributes an overall

energy-independent factor which is proportional to the nuclear density. A comparison

of the imaginary part of the self-energy in Fig. 3.3 to the imaginary part of the G-

matrix in Fig. 3.5 shows the close relationship of their energy dependence. In the

following section, although the discussion is presented in terms of the imaginary part

of the diagonal G-matrix elements for exactness, it applies well to the self-energy, if

only approximately. In the end, it is the self-energy which directly determines the

energy dependence of the spectral function.

3.1.2 Coupling 1p to 2p1h states

The Æ-functions in Eq. (3.7) permit the integrals over intermediate state variables

to be performed explicitly. Taken together with Eq. (3.3), an expression is readily

derived for Im G where phase-space factors are conveniently decoupled from the

weighting matrix elements,

Im hpjG(Q;
)jpi = ��X
Y L

jhpjG(Q;
)jq0ij2QY N(Q; q0)q
2
0

�����@"Y N@q

�����
�1

q=q0| {z }
'p
'q0

: (3.11)

Here p, Q and 
 are the relative momentum, total momentum and total energy for

the �N state obtained by averaging over the nucleon hole momentum. The on-shell

relative momentum, q0, is de�ned by the two-particle energy through,


 � "Y N(Q; q0); (3.12)

and varies depending on which hyperon (� or �) is present in the intermediate state.

As indicated in Eq. (3.11), there are two sources of energy dependence for diag-

onal matrix-elements of Im G. There is a phase-space factor which, aside from Pauli

e�ects and deviations from free spectra for the intermediate particles, contributes a

simple, structureless energy dependence for each Y N channel. The two Y N channels

do possess di�erent energy thresholds and this does lead to an expectation of struc-

ture at the �N threshold (region near 70 MeV in Fig. 3.5) purely on the basis of

phase-space considerations. However, most structure found in the energy dependence
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Figure 3.5: The components of Im G as de�ned by Eq. (3.11). One curve is associated
with each Y N intermediate state accessible from the initial �N 3S1 state. The full
curve is the sum of the four components.

of Im G can be attributed to the half-on-shell matrix elements of G which e�ectively

couple the 1p and 2p1h states.

Taking the example of an initial �N 3S1 state, Eq. (3.11) is plotted in Fig. 3.5.

Contributions from each of four possible intermediate states, characterized by dif-

ferent Y L combinations, are plotted together with their sum. All terms contribute

signi�cantly except for the �N 3D1 intermediate state which couples relatively weakly

to the initial state.

Though the form of Eq. (3.11) is useful for isolating purely phase-space in
u-

ences on the energy dependence of Im G, a complex, non-linear tangling of states

remains concealed within the half-on-shell G-matrix elements. These tangled inter-

mediate states can be further unscrambled by considering a dissection of the pertinent

G-matrix elements into a pair of complementary approximations. One may de�ne a
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\direct" approximation to a particular matrix element, h�jGj�i, by eliminating all

matrix elements h
jV jÆi from the de�nition of the G-matrix equation except those

where � = 
 and � = Æ. The complementary \indirect" approximation to G is de�ned

by eliminating only those matrix elements of V where � = 
 and � = Æ. Note that

complementary sets of approximate G-matrices are de�ned for each choice of initial

and intermediate state.

As an example, consider the situation where only transitions to an intermediate

�N 3S1 state are allowed. This can be accomplished by generating a new G-matrix

where all matrix elements of V are set to zero, except those which connect the initial

state to the �N 3S1 intermediate state. In this case there is only a single term in the

sum of Eq.( 3.11), corresponding to the lone available intermediate state. This version

of Im G, where only the direct route to the �N 3S1 intermediate state is available, is

compared with the corresponding �N 3S1 term from the result for the fully correlated

G-matrix in Fig. 3.6. The shapes are very similar except in the energy range near the

�N threshold and below. This similarity indicates that the e�ective couplings to the

�N 3S1 intermediate state are only modestly in
uenced by the presence of the other

intermediates, except in the vicinity of the �N threshold.

The �N 3S1-�N
3D1 e�ective interaction is likewise dominated by direct cou-

pling as shown in Fig. 3.7. This clearly shows that an energy region can be identi�ed

with states that are reached primarily via a tensor interaction (the few hundred MeV

range). Contrast this with Fig. 3.6 where the �N 3S1-�N
3S1 term has no tensor

interaction and peaks above 1 GeV. Indirect contributions factor in only marginally.

For some channels, a direct approximation is not feasible. In these cases,

turning o� the direct �N 3S1-�N
3S1 transition causes the numerical determination

of the coupled channel G-matrix to become unstable. It still turns out to be useful to

de�ne and utilize a semi-direct approximation in these cases. In this approximation,

the �N 3S1-�N
3S1 potential is retained, along with the matrix elements for the direct

transition. Inclusion of these matrix elements serves to stablize the numerics while

only interfering minimally (at higher order). A semi-direct approximation to �N 3S1-

�N 3S1 channel involves turning o� all tensor interactions and leaving only the two

central transitions. Fig. 3.8 con�rms that this approximation primarily cuts in the

\tensor" region identi�ed from Fig. 3.7 and this is where the indirect approximation

gives its largest contribution.
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Figure 3.6: Dashed curve is the direct approximation to Im G for the �N 3S1 in-
termediate state. The full curve is the Im G component attributed to this same
intermediate state when all couplings are intact. Note that there is no indirect con-
tribution for this channel because the direct �N 3S1 ! �N 3S1 transition turns out
to be crucial for the numerical determination of the G-matrix.
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�N 3D1 intermediate state.
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Figure 3.8: Semi-direct (dotted) and indirect (dashed) approximations to Im G for
the �N 3S1 intermediate state. Semi-direct because the �N 3S1-�N

3S1 couplings
must still be included in order to obtain reasonable results.
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Figure 3.9: a. The HF part of the self-energy. b. Second order self-energy diagram;
allows coupling to intermediate 2p1h states.

3.2 The Quasi-Particle Peak

As indicated by the spectral function peak in Fig. 3.1, an energy region with a sub-

stantial amount of sp strength survives the mixing with higher-lying 2p1h states. 1

However, this qp peak is shifted in energy, broadened and has lost some fraction of

strength compared to the delta-function distribution appropriate for a non-interacting

particle.

3.2.1 Location

The location of the peak is given by the qp energy as de�ned in Eq. (2.57). The

real part of the self-energy, playing the role of a sp potential, shifts the peak from

its unperturbed location at the kinetic energy. The self-energy can be split into two

pieces,

�(k;!) = �V (k) + ��(k;!); (3.13)

each corresponding to a di�erent type of physical process (Fig. 3.9).

Treating the self-energy at lowest order in the �N interaction (the HF approx-

imation) only elastic scattering between the lambda and nucleons below the fermi

energy is considered, Fig. 3.9a. This leads to a real, energy-independent contribution

to the self-energy, �V (k). This term is relatively large and positive, on the order of

50 MeV, re
ecting the repulsive character of the bare interaction.

1True to a lesser extent for systems at higher density or subject to stronger interactions, such as
liquid helium [27].
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The coupling to 2p1h intermediate states is represented by the diagram of

Fig. 3.9b. Such processes induce a complex, energy-dependent component to the

self-energy, ��(k;!). This self-energy piece obeys a dispersion relation (Eq.2.49),

Re ��(k;!) =
�P
�

Z 1

"�
F

d!0
Im �(k;!0)
! � !0

: (3.14)

This means that the real part of the self-energy in the neighborhood of some particular

energy, such as "qp, requires knowledge of Im �(k;!) at all energies. The imaginary

part of the self-energy is dominated by a broad, smooth peak at high-energy, as seen in

Fig. 3.3. In contrast, the qp peak resides at a much lower energy, "qp(k); far removed

from the bulk of the strength in Im �(k;!), which is centered at some energy, !0,

in the GeV range. If the only appreciable contribution to Eq. (3.14) evaluated at

! = "qp(k) comes from !0 near !0, then the denominator in the integrand may be

approximated as a constant: "qp(k)� !0. This leaves

Re ��(k; "qp(k)) ' �1
�

1

"qp(k)� !0

Z 1

"�
F

d!0Im �(k;!0) (3.15)

=
�1
�

I0
"qp(k)� !0

; (3.16)

where I0 is just the integrated strength in Im �(k;!). In this approximation Re ��(k; "qp(k))

depends on only two parameters which together characterize the gross properties of

Im �(k;!); the integrated strength, I0, and the centroid of the high energy peak,

!0.
2 These two parameters de�ne a model for a simple low-energy approximation to

Re ��,

Re �model� (k; "qp(k)) � �1
�

I0
"qp(k)� !0

: (3.17)

The full structure of the self-energy is shown in Fig. 3.10 with the two-parameter

model for comparison.

Decreasing the density of 2p1h states and/or the strength of coupling to these

states is analogous to a decrease in the parameter I0. This simply scales down the

real part of the self-energy for all energies, thereby reducing the binding contribution

to "qp. Alternatively, moving the 2p1h states to higher energy can be mimicked by

2Though nominally k dependent, the parameters I0 and !0 should vary only slowly with k since
they characterize the gross structure of Im �(k;!) at high energy; structure which is far removed
from the low energy realm of the qp peak.
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ison.
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an increase in the parameter !0, which likewise results in a reduction in the real part

of the self-energy at "qp and a consequent decrease in qp binding. 3

The success of this simple model, limited as it is, indicates that "qp is dom-

inantly determined by high-energy 2p1h states, but at the same time is relatively

insensitive to details of the coupling to these states. To quantify the insensitivity of

"qp to low-lying excited states, one can isolate the low-energy tail of Im �(k;!) in

Eq. (3.14), and examine its e�ect on "qp. The �rst 100 MeV of Im �(k;!) above the

lambda threshold only contributes to "qp at the level of a few percent. The disparity

of about 10 MeV between the model and the full result can be attributed to the �nite

width of the peak, and especially the low-energy shoulder in the range of a few 100

MeV where coupling to the �N channel is most important. It should be noted that

these results are contingent on Im �(k;!) being of a form similar to that depicted in

Fig. 3.3. The imaginary part of the self-energy is dominated by its structure at high

energy precisely when SRC dominate the �N e�ective interaction from which it is

derived. This depends in part on the short-range behavior of the bare interaction, but

also on the approximation method selected when de�ning the e�ective interaction.

The ladder approximation adopted in this work is speci�cally chosen because it in-

corporates the essential features of SRC while de-emphasizing LR behavior and more

collective states which naturally occur at low excitation energy. A realistic calculation

for a �nite hypernucleus, utilizing the same bare interaction, but going beyond the

ladder approximation might well show greater sensitivity to low-lying states [28].

Since I0 < 0, the real part of the self-energy will be negative for any energy

below !0, including the \on-shell" region near the qp peak. This means that the

self-energy term which represents the coupling to high-energy 2p1h states (Fig. 3.9b)

will always lower the energy of the qp state. This result is familiar from perturbation

theory, where a second-order correction to the energy always serves to lower the energy

of the ground state. This binding more than o�sets the HF contribution to "qp and

leads to a monotonically increasing qp spectrum. A sp potential, U(k), de�ned by

"qp(k) � t(k) + U(k); (3.18)

is plotted in Fig. 3.11 together with the sp potential employed for the nucleons.

3Though "qp will be shifted as well, this change is insigni�cant compared to a change on the
energy scale of !0.
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The net binding of 30 MeV for a lambda at rest in NM is consistent with other

calculations [13] as well as an extrapolation from experimentally measured s-shell

binding energies for hypernuclei [29]. Only the S-waves are included in this work.

Higher partial waves yield corrections to "qp on the order of no more than 10% and

even at this level tend to cancel each other out [30].

3.2.2 Width

In contrast to the position of the qp peak, which is essentially determined by the

structure of the imaginary part of the self-energy at very high energies, the width of

the peak is directly proportional to the local value of Im � at the qp energy (Eq. 2.61).

To the extent that coupling to these low-lying 2p1h states is only weakly momentum

dependent (for low values of k), the width is directly proportional to the local density

of 2p1h states. Phase space restrictions near the 2p1h threshold determine the low-

energy structure of the imaginary part of the self-energy [31].

Im �(k;!) ' c(k)[! � "F ]
2 ! ! "+F : (3.19)

For values of k such that "qp(k) is low enough to fall in the energy range where

Eq. (3.19) is valid, the qp width can be simply expressed as a function of the peak

position,


(k) ' c0(k)["qp(k)� "F ]
2: (3.20)

This approximation is shown together with the calculated width as a function of

momentum in Fig. 3.12, where the factor c0(k) has been approximated as a constant,

independent of k. Although this model for the qp width is not precisely accurate

except very near k = 0, it does suggest the origin of the growth of 
(k) with increasing

k.

If the qp part of the spectral function is interpreted as a distinct sp-like state,

then 
qp(k) is the width induced by coupling to a population of nearby states.

Overlaying the QPA to the spectral function on top of the full spectral function,

Fig. 3.13, demonstrates the utility of the QPA for low k. A quantitative discussion

of the QPA range of validity is provided in Appendix B. A sharp rise in Im �(k;!)

occurs in the vicinity of ! ' 200 MeV as can be seen in Fig 3.3. When "qp(k) reaches

this energy range, the QPA is no longer a reasonable approximation. This occurs for
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Figure 3.12: The solid curve represents the qp width as a function of k. The dashed
curve represents an approximation to the width based on the local density of 2p1h
states.
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Figure 3.13: Solid curve is the full spectral function for k = 110 MeV/c. The dashed
curve is the QPA.



46

a lambda with momentum in the neighborhood of k ' 600 MeV/c and is a sign that

another energy threshold has been crossed. This threshold is discussed in Section 3.3.

3.2.3 Strength

According to Eq. (2.60), the amount of spectral strength concentrated in the qp peak

is given by the derivative of Re ��(k;!) with respect to ! locally at "qp. In terms of

the dispersion relation for Re ��(k;!), Eq. (2.60) becomes

z(k) =

"
1� P

�

Z 1

"F
d!0

Im �(k;!0)
("qp(k)� !0)2

#�1
: (3.21)

Comparing to Eq. (2.49), the strength in the qp peak, z(k), is seen to exhibit a

greater sensitivity to the structure of Im �(k;!) than does the peak position, "qp.

The z-factor (Fig. 3.14) is most accurate as a measure of strength in the peak of the

spectral function for low values of k, as discussed in Appendix B.

A nuclear matter calculation for nucleons similar to this one [32] yields a par-

ticle spectral function like Fig. 3.15, for a momentum just above kNF . The z-factor

obtained from this calculation is zN (k
N
F ) = 0:72, which is substantially reduced com-

pared to z�(k
�
F ) = 0:87 for a similar lambda qp state. These two momentum values

are compared because each qp sits at the lowest possible excitation energy for a qp in

the respective systems. In Ref. [32], the depletion of the qp strength is explained in

terms of couplings to 2h1p states, which moves approximately 10% of the sp strength

to energies below "NF , and coupling to 2p1h states, which distributes another 18%

to higher energies in the particle domain. The corresponding fraction of sp strength

in the particle domain is 13% for the lambda, compared to 18% for nucleons. A

more detailed look at the distribution of strength as a function of energy is given in

Fig. 3.16.

The relative e�ects of tensor and short-range correlations can be untangled

to some extent. Turning o� the 3S1 �3 D1 tensor coupling in the Reid potential for

nucleons indicates that this interaction is responsible for depleting the qp strength

by about 6.5%, almost all within 1000 MeV of "NF . Similarly, turning o� the �N -�N

coupling in the NSC89 potential reveals that tensor e�ects are responsible for almost

half of the reduction in the lambda qp strength. A value of z�(k
�
F ) = 0:94 is obtained

when coupling to �N states is cut o�.
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Figure 3.14: Quasi-particle strength as a function of k.
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Figure 3.17: Im � for the case where �N - �N coupling is included (solid curve),
without coupling (dashed) and when �-exchange is turned o� in V (dotted). Plotting
with respect to self-consistently determined � threshold energy ensures that the �N
threshold is in the same location for each curve. k = 10 MeV/c.

3.3 The �N Threshold

In NM the �N threshold opens at an energy about 90 MeV above the self-consistently

determined �N threshold. 4 Again, the imaginary part of the self-energy provides a

picture of how the �NN�1 2p1h states in
uence � sp properties. The imaginary part

of the self-energy is plotted in Fig. 3.17 for the case where coupling to the �N states

is turned o�. Turning o� the �N coupling leads to a recovery of 7% of the strength

in the qp peak as the z-factor increases from 0.86 to 0.93. A reduction in spectral

strength is observed at all energies, but is particularly apparent at, and just above,

the �N threshold. There are two reasons �NN�1 2p1h states are most in
uential in

4The mass di�erence is m��m� = 77 MeV, but the � is bound in NM by about 30 MeV whereas
the � binding is about half as much.
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this energy region. First, a \threshold e�ect" is responsible for the sharp cusp in Im �

near 100 MeV. This behavior may be understood physically in the same way as the

cusp observed in the �N elastic scattering cross-section [33]. In scattering theory,

the elastic cross-section may be calculated from the bare two-body interaction via

the on-shell elements of the T -Matrix. In NM, an e�ective interaction, such as the

G-Matrix is a generalization of the free-space T -Matrix. Structure arises in the �N

G-matrix as a consequence of the strong coupling to the nearby �N channel [34].

From Eq. (2.47), the imaginary part of the self-energy shares the same structure as

the imaginary part of the G-Matrix.

Secondly, isospin conservation in the strong �N interaction forbids excitation

of nuclear ph states via �-exchange. However, this is a strongly allowed process for

the �N interaction, preferentially exciting �NN�1 2p1h states in the energy range

of a few hundred MeV. Turning o� the �-exchange component of the bare interaction

(Fig. 3.17) demonstrates that it is partly responsible for the �N channel's in
uence

on the �, but apparently the non-tensor part of the �N -�N coupling plays just as

signi�cant a role, even in the \tensor" region. The nucleon spectral function manifests

a similar feature of an energy range dominated by the tensor interaction [35].

The e�ect on the spectral function is to induce additional structure in the vicin-

ity of the threshold energy (Fig. 3.18). The spectral signature of this new channel

is a reduction of strength just below threshold followed by an enhancement immedi-

ately above threshold which slowly dies out at increasing energy. The location of the

�N threshold is dependent on the total momentum of the �N pair. The self-energy

involves an average over all values of Q that can be realized for a � with a given

momentum, k, and a nucleon hole which can have a range of momentum according to

the nuclear density. This averaging smears out the location of the \cusp" structure

in the self-energy and in the spectral function.

3.4 The High Energy Region

Away from the qp peak, at high-energy, the size and structure of the spectral function

is primarily determined by two factors. The density of 2p1h states increases like !1=2

at high energy. This growth in spectral strength with energy is moderated by the

strength of the coupling to these high energy states. A lambda with a reasonably low

momentum couples to a nucleon hole state only with a low relative momentum. The
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Figure 3.18: Spectral function in the vicinity of the �N threshold with �N -�N
coupling (solid) and without (dashed). Note that the � threshold di�ers by about 30
MeV between the two cases. k � 100 MeV/c.
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high energy �N two-particle states couple most strongly to high relative momentum

and the strength of the potential matrix elements between these two states depends

on the short-range characteristics of the two-body interaction. A harder core allows

a stronger coupling between states and correspondingly more spectral strength at

high energy (Section 3.4.1). The fact that structure in the high-energy region of the

spectral function is primarily determined by the short-range behavior of the two-

body interaction should be tempered by the knowledge that the short-range part

of baryon-baryon interactions are poorly known. Typical potentials are designed,

within whatever model, to �t only low-energy experimental data which does little to

constrain the details of the repulsive core. This situation can be taken in two ways.

On the one hand, the high-energy tail of the spectral function is just as uncertain in

detail as the core of the interaction from which it is derived. On the other hand, it

is also just as experimentally inaccessible and any observable which can be related

to the detail of the tail in the spectral strength distribution could be used to gain

insight into the behavior of the bare two-body interaction at short-range.

In Fig. 3.19 the similarities of the tail of the spectral strength for di�erent

momenta is illustrated.

3.4.1 Sum Rule

There exists a sum rule relating the energy weighted integral of the spectral function

to the matrix elements of V in a very direct manner [36]. Writing the result from

Ref. [36] for the case of a � in NM,

Z 1

"F
d!!S�

p (k;!) =
k2

2m
+

1

(2�)3

Z
d3k0n(k0)h~k~k0jV j~k~k0i; (3.22)

where n(k) is the occupation probability of the sp nucleon state with momentum k,

n(k) =
Z "F

1
d!SN

h (k; !): (3.23)

Note that the two terms comprising the RHS of Eq. (3.22) are just the kinetic energy,

t(k), and the energy independent part of the self-energy, �V (k), respectively. The

LHS of Eq. (3.22) may be formally divided into two pieces,

Z
d!!Sp(k;!) �

Z
d!!Sqp(k = 0;!) +

Z
d!!Stail(k = 0;!); (3.24)
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the �rst corresponding to the qp peak and the second a \tail" primarily composed

of strength at energies above "qp. Specializing to the case of k = 0 for simplicity,

Eq. (3.22) becomes,

z(0)"qp(0) + Itail(0) = �V (0); (3.25)

where, Z
d!!Stail(k;!) � Itail(k); (3.26)

and Z
d!!Sqp(k;!) = z(k)"qp(k): (3.27)

Furthermore

Sqp(k;!) = z(k)Æ(! � "qp(k)) (3.28)

has been used to obtain the contribution from the qp peak explicitly. The qp energy

may be divided into two parts as in Eq. (3.13),

"qp(0) = �V (0) + �2p1h(0): (3.29)

Now Eq. (3.25) may be rewritten as

z(0)�V (0) + [z(0)�2p1h(0) + Itail(0)] = �V (0): (3.30)

For the lambda, z(0) = 0:87 which is close enough to unity that Eq. (3.30) implies

z(0)�2p1h(0) � �Itail(0): (3.31)

This may be interpreted to mean that the coupling to 2p1h states at high energy

shifts the qp peak from its HF value to lower energy. It may further be observed that

for a strongly repulsive potential, �V (0) will be large and positive, as pointed out in

Ref. [36]. For the NSC89 potential used in this work, the value is approximately 50

MeV. If the lambda is to be bound at the experimentally observed level of approxi-

mately 30 MeV, then the larger �V (0) is, the larger �2p1h(0) must be to compensate.

This in turn requires a larger value of Itail(0) to satisfy the sum rule. This constitutes

an indirect association between the strength of the repulsive bare interaction and the

required distribution of strength at high energy.
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Chapter 4

Non-Mesonic Weak Decay in

Nuclear Matter

An overview of weak decay properties of the lambda is presented. The presence of

a nuclear medium forces a shift from the mesonic to the non-mesonic decay mode,

which becomes the focus for the rest of this work. In Section 4.2 the non-mesonic

decay width is linked to the self-energy. Approximations are made which yield a

simple expression for the decay width in terms of weak interaction matrix elements.

The weak meson-exchange potential is discussed in Section 4.3. The structure

of the �N ! NN interaction is examined and used to construct a �N ! NN as

required for the next chapter.

Results of a calculation of the lambda decay width without vertex form factors

or initial-state correlations are presented in Section 4.4. Comparison is made with

a key result from the literature as a check. Vertex form factors are included in

Section 4.5 and their e�ects are discussed before moving on to a detailed examination

of initial-state correlations in the next chapter.

4.1 Weak Decay of the Lambda

In free space the lambda decays primarily through the weak pionic modes (Fig. 4.1a),

�! p+ �� + 38MeV (64%) (4.1)

�! n+ �0 + 41MeV (36%); (4.2)
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Figure 4.1: a. Mesonic decay. b. Non-mesonic decay.

with a lifetime of

�� = 2:63 x10�10 s (4.3)

which corresponds to a decay width of

�� = 2:5 x10�12MeV: (4.4)

In the center-of-mass of the decaying lambda, the �nal state particles have momenta

of about 100 MeV/c.

The presence of a nuclear medium forces fundamental changes in the lambda

decay mode. If one imagines producing a lambda at rest in a Fermi gas of nucle-

ons (kF = 270 MeV/c), then the �nal state nucleon in Fig. 4.1a is Pauli blocked,

resulting in complete suppression of the mesonic decay mode. In a realistic nuclear

medium correlations among the nucleons \softens" the sharp momentum distribution

characteristic of a Fermi gas [37]. Although this might seem to indicate a signi�cant

easing of the Pauli restriction, energy and momentum conservation requirements for

the decay still ensure that the mesonic decay width in heavy hypernuclei is well below

the free width [38].

If interactions between the lambda and nucleons in the medium are considered,

then a new two-body decay mode becomes possible, Fig. 4.1b. The weak vertex is

the same as in Fig. 4.1a, but now the meson is subsequently absorbed by a nucleon

from the medium resulting in a net Y N ! NN transition. Since this non-mesonic

mode involves a virtual meson exchange, the entire �-N mass di�erence of 176 MeV

is made available for the kinetic energy of the �nal state particles. This translates
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Figure 4.2: a. Lowest order self-energy diagram for non-mesonic lambda decay. Ex-
ternal lines represent lambda particles and internal lines represent nucleons, which
should, in principle, be dressed by the medium (double lines). b. Transition is second
order in the weak interaction. Note: For strange meson exchange the weak and strong
vertices are switched in both diagrams.

into a momentum of about 400 MeV/c for the �nal state nucleons, overcoming any

Pauli blocking. Since the non-mesonic decay is catalyzed by a nucleon from the

medium, the decay rate is expected to be proportional to the nuclear density. Con-

versely, the mesonic decay is suppressed at high nuclear densities and it follows that

the non-mesonic mode will dominate for suÆciently heavy hypernuclei. Experimen-

tally, it is found that the non-mesonic mode dominates for all but the very lightest

hypernuclei [12].

4.2 Self-Energy and the Weak Decay Width

The non-mesonic decay width may be expressed in terms of the second order self-

energy diagram [39] depicted in Fig. 4.2a,
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�
(nm)
� (k) = �2Im �

(nm)
� (k): (4.5)

The self-energy is evaluated on-shell and averaged over the lambda spin,

�
(nm)
� (k) � 1

2

X
�

�
(nm)
� (k �; "�(k)); (4.6)

where single-particle spin and isospin quantum numbers have been denoted by

j�i � jsms tmti: (4.7)

Using standard Feynman diagram rules, the self-energy of Fig. 4.2a is given by

�
(nm)
� (k) =

1

2

X
��

Z d!0

2�i

Z d3p

2�3
h~k�; ~p�jW (Q; "�(k) + !0)j~k�; ~p�igN(p;!0); (4.8)

where the second order weak transition matrix (Fig. 4.2b) is de�ned by

h~k�; ~p�jW (Q; 
)j~k�; ~p�i = �1

2

X
��

Z
d3q1

Z
d3q2h~k�; ~p�jV (w)j~q1�; ~q2�i

gIINN(~q1; ~q2; 
)h~q1�; ~q2�jV (w)j~k�; ~p�i: (4.9)

The nucleon hole propagator is taken to have the form appropriate for a non-interacting

particle,

gN(p;!
0) =

�(kF � p)

!0 � "N(p)� i�
: (4.10)

Changing to total spin and isospin,

~S = ~s� + ~sN (4.11)

~T = ~t� + ~tN ; (4.12)

and to total and relative momentum,

~Q � ~k + ~p (4.13)

~q �
�
��
mN

�
~p�

�
��
m�

�
~k; (4.14)
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leads to

1

2

X
��

h~k�; ~p�jW (Q; 
)j~k�; ~p�i = 1

4

X
ST

X
MSM

0

S

(2T + 1)h~qSMST jW (Q; 
)j~qSM 0
ST i:

(4.15)

Making a change in the integration variable from ~p to ~Q, performing the integration

over the nucleon hole energy and expanding on a partial-wave basis transforms Eq. 4.8

into

�
(nm)
� (k) =

1

4

X
JLT

(2J + 1)(2T + 1)
Z
dQQ2

Z 1

�min
Q

d�Q
2

hqJ(LS)T jW (Q; "�(k) + "N(p))jqJ(LS)T i; (4.16)

where

q = q(k;Q; �Q) (4.17)

p = p(k;Q; �Q); (4.18)

�Q is the cosine of the angle between ~Q and ~k, and

hqJ(LS)T jW (Q; 
)jqJ(LS)T i = �1

2

X
L0

Z
d3q0jhqJ(LS)T jV wjq0J(L0S 0)T ij2

�gIINN(q
0; Q; 
): (4.19)

Eqs. 4.5, 4.16 and 4.19 yield the following expression for the decay width

�
(nm)
� (k) = �1

8

X
JLL0T

(2J + 1)(2T + 1)
Z
dQQ2

Z 1

�min
Q

d�Q
2Z

d3q0jhqJ(LS)T jV wjq0J(L0S 0)T ij2

Im �gIINN(q
0; Q; 
): (4.20)

4.2.1 Approximate Expression for Weak Decay Width

To facilitate comparison with other work and simplify the numerical calculation,

Eq. (4.20) is further modi�ed in this section. The two-particle energy, 
 � "�(k) +

"N(p), is dependent on the integration variables through the nucleon hole momentum
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as indicated in Eq. 4.18. The nucleon hole propagator in Eq. 4.10 contains a Pauli-

function which restricts the nucleon momentum to a range below kF . The two-nucleon

propagator in Eq. 4.19 may be evaluated at a single energy if an average value of the

nucleon momentum,

�p � 3kF
5

(4.21)

is used as an approximation.

Using the non-interacting particle approximation for the intermediate nucleons,

the angle-averaged two-particle propagator is

�gIINN(q; Q; 
) =
��NN (q; Q; kF )


� �"NN(q; Q) + i�
: (4.22)

The imaginary part is then given by

Im �gIINN(q; Q; 
) = �Æ(
� �"NN(q; Q))

= �

�����@�"NN

@q

�����
�1

q=q0

Æ(q � q0); (4.23)

where q0 is de�ned by

�"NN(q0; Q) � 
 + (M� �MN): (4.24)

The two-particle energy, 
, as determined from the initial �N state using the average

momentum, �p, for a nucleon hole and k = 0 for the lambda is


 = "�(k) + "N(�p) � �80MeV: (4.25)

Using this value of the two-particle energy, the angle-averaged value of the �nal state

two-nucleon energy is

�"NN(q0; Q) = 2"N(�qN ) � �80 + (1116� 939)MeV

"N(�qN) � 52MeV; (4.26)

which yields a value of the relative momentum, �qN � 420 MeV/c.

For a lambda at rest, the total momentum is just Q = �p � 160 MeV/c, which

is suÆciently small compared to �qN that �qN (q0;Q) � q0 to a good approximation.
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The derivative of the two-nucleon energy in Eq. 4.23 may be evaluated as

@�"NN (q0; Q)

@q
� 2

@"N(q0)

@q
� 2

q0
M�

N

; (4.27)

where a nucleon e�ective mass, M�
N , has been introduced. The nucleon energy spec-

trum is

"N(q) � tN(q) + UN (q); (4.28)

where a Wood-Saxon parameterization is used to �t a numerically determined nucleon

sp potential. The ratio, MN=M
�
N , is approximately 1.37 for q0 = 420 MeV/c, and

goes to unity as q0 becomes large enough that the potential term in Eq. 4.28 can be

neglected.

The resulting expression for the imaginary part of the two-nucleon propagator

is

Im �gIINN(q; �Q; �
) =
i�M�

N

2q0
Æ(q � q0); (4.29)

and the W -matrix is

hqJ(LS)T jW ( �Q; �
)jqJ(LS)T i = ��M
�
Nq0
4

X
L0

jhqJ(LS)T jV wjq0J(L0S 0)T ij2: (4.30)

The remaining dependence on the integration variables, Q and �Q, can be

eliminated by taking an average value of the relative momentum, q(Q; �Q; k), in the

initial �N state. The imaginary part of the on-shell self-energy from Eq. 4.16 is

Im ��
(nm)
� (k) =

1

4

X
JLT

(2J + 1)(2T + 1)

k3F
3

"
��M

�
Nq0
4

X
L0

jh�qJ(LS)T jV wjq0J(L0S 0)T ij2
#

(4.31)

with �q � 70 MeV/c. This yields a simple approximation for the non-mesonic decay

width

��
(nm)
� (0) =

3�3

16
(q0M

�
N�)

X
JLL0T

(2J + 1)(2T + 1)jh�qJ(LS)T jV wjq0J(L0S 0)T ij2; (4.32)
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where � denotes the nuclear density. Calculation of the weak decay width is now

reduced to evaluating a few matrix elements of the �N ! NN transition potential.

This approach is similar to that used in Ref. [40].

4.3 The Weak Meson-Exchange Potential

A weak meson-exchange interaction may be constructed formally in much the same

way as the strong Nijmegen potential. Parameters of the strong interaction are de-

termined by �ts to Y N scattering data (and NN scattering data through the use

of 
avor symmetries). This procedure determines coupling constants for the strong

NNm vertices which may be carried over directly to the weak interaction. The only

experimentally accessible quantities which can be readily related to needed weak cou-

pling constants are hyperon decay amplitudes and these only provide information for

the Y N� vertices. Exchange of heavier mesons occurs only as a virtual process and

weak coupling constants must be derived in the context of some theoretical model.

Except where noted, �N ! NN potential matrix elements are generated using

a code provided by A. Parre~no and A. Ramos based on their work as presented in

Ref. [41]. Necessary �N ! NN matrix elements are related to the �N ! NN

matrix elements as discussed in Section 4.3.2.

4.3.1 Weak Coupling Constants from Experimental Decay

Amplitudes

The amplitude for the Y ! N� decay may be written [42] as

MY!N� = �UN (A+B
5)��UY : (4.33)

The hyperon and nucleon �elds are represented by UY and UN , and the pion �eld

by ��. A and B are coupling constants for the Parity Violating (PV) and Parity

Conserving (PC) amplitudes respectively. The partial width for this decay is found

to be [42],

�Y!N� =
q(EN +mN )

4�mY

�
jAj2 +

�
EN �mN

EN +mN

�
jBj2

�
; (4.34)

with

EN = (m2
N + q2)1=2: (4.35)
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Y ! N� A B
�! p�� 1.47 -10.00
�! n�+ -1.07 7.15
�+ ! p�0 -1.48 -12.04
�+ ! n�+ 0.06 -19.10
�� ! n�� 1.93 0.65

Table 4.1: Coupling constants in units of GFm
2
� = 2:21 x10�7 are taken from Ta-

ble XII-5 in Ref. [42], except the sign of the B values has been 
ipped to correspond
with the Bjorken and Drell [43] sign convention for 
5. Coupling constants are cal-
culated from data in Ref. [44]. The latest experimentally determined lifetimes, from
which these coupling constants are generated, have errors less than 1% [33].

The constants A and B are obtained from experimental partial decay rates (which de-

termine only the magnitudes) and polarization measurements (required to determine

the signs). These are listed in Table 4.1.

Although isospin is not conserved in weak interactions, it is empirically ob-

served to change only in a restricted manner. As an example, Eq. 4.2 is consistent

with a purely T = 1=2 �nal state even though the nucleon and pion can in principle

also couple to T = 3=2. This empirical �T = 1=2 rule is also observed in kaon and

sigma hyperon decays [45]. Although the reason for this rule is not well understood,

it may be incorporated in the weak decay formalism to �nd relationships among the

coupling constants of Table 4.1, reducing the number of independent amplitudes from

10 to 6.

The Spurion Formalism

The �T = 1=2 rule may be implemented by associating with each hyperon state, jY i,
a corresponding \spurion" state [45],

j ~Y i � j 1
2
� 1

2
i 
 jY i: (4.36)

Coupling to the \spurious" j 1
2
� 1

2
i isospin state enforces a change of 1/2 in the total

isospin while conserving charge. The resulting isospin structure of the lambda spurion

is

j~�i � j 1
2
� 1

2
i 
 j0 0i

= j 1
2
� 1

2
i: (4.37)
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Note that the lambda spurion has the same quantum numbers as a neutron. The

spurion �eld may be used in place of the hyperon �eld to construct an isospin con-

serving weak vertex, e�ectively mimicking a �T = 1=2 transition. The amplitude of

Eq. 4.33, modi�ed to make use of the isospin 1/2 spurion �eld, becomes

M�!N� = �UN(A� +B�
5)~� � ~��U~�; (4.38)

where the vertex operator is now explicitly an iso-scalar and A� and B� are isospin-

independent \reduced" couplings for lambda decay. Aside from inclusion of the PV

amplitude on the same footing as the PC amplitude, Eq. 4.38 for the weak vertex is

exactly the same form as is typically used for the strong NN� vertex.

The isospin structure of the sigma spurion is constructed in analogy with

Eq. 4.37 (see Section C.1) and yields

j~�+i =

s
2

3
j 1
2

1

2
i �

s
1

3
j 3
2

1

2
i;

j~�0i = �
s
1

3
j 1
2
� 1

2
i+

s
2

3
j 3
2
� 1

2
i;

j~��i = j 3
2
� 3

2
i: (4.39)

Note that the sigma spurions are a combination of isospin 1/2 and 3/2 components.

As an example, the ~�+ has a t = 1=2 component with the same isospin as a proton

and a t = 3=2 component with the isospin of a �+ isobar. In light of this isospin

structure, the weak iso-scalar vertex appropriate for sigma decay contains two terms,

M�!N� = �UN(A
(1)
� +B

(1)
� 
5)~� � ~��U~�

+ �UN(A
(3)
� +B

(3)
� 
5)~T � ~��U~�: (4.40)

The �rst term has the same form as Eq. 4.38 and accounts for decay from the isospin

1/2 component of the sigma spurion. The second term involves the isospin transition

operator, T , in place of � and accounts for decay from the isospin 3/2 component

of the sigma spurion. The ~T � ~� operator is the form which is also used for a �N�

vertex [46].

The spurion formalism implements the �T = 1=2 rule, but also results in

a weak decay amplitude with a compact isospin structure which describes the Y N�
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Decay A B
�! p�� 1.04 �7:07
�! n�0 1.07 �7:15
Average 1.05 �7:11

Table 4.2: Reduced coupling constants in units of GFm
2
� as determined from the

lambda pionic decays.

vertex with a minimal number of coupling constants. These six independent constants

(A�, A
(1)
� , etc . . . ) may be determined from the data in Table 4.1 by evaluating the

isospin operator for the various decay modes. Amplitudes for the two lambda decay

channels may be expressed in terms of an isospin factor times an isospin-independent

\reduced" amplitude,

a(�! N�) � h~�j~� � ~�jN�i~a(�! N�): (4.41)

Evaluating the isospin factor for each decay channel (see Section C.2) leads to

a(�! p��) =
p
2~a(�! N�); (4.42)

a(�! n�0) = �~a(�! N�): (4.43)

These relationships hold separately for the PV and PC amplitudes and allow the

reduced coupling constants (Table 4.2) to be found.

For sigma decay, the amplitude for a particular decay channel may be expressed

in terms of reduced amplitudes for each of the two isospin components which comprise

the sigma spurion.

a(�! N�) � a(1)(�! N�) + a(3)(�! N�)

� h~�j~� � ~�jN�i~a(1)(�! N�)

+ h~�j~T � ~�jN�i~a(3)(�! N�): (4.44)

where

j~�i = �j 1
2
m~�i+ �j 3

2
m~�i; (4.45)
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1st Decay 2nd Decay A(1) A(3) B(1) B(3)

�+ ! p�0 �+ ! n�+ -0.57 1.52 -15.94 -1.47
�+ ! p�0 �� ! n�� -0.70 1.36 -14.37 0.46
�+ ! n�+ �� ! n�� -0.51 1.36 -16.73 0.46

Average -0.59 1.41 -15.68 -0.18

Table 4.3: Reduced coupling constants in units of GFm
2
� as determined from the

sigma pionic decays.

with constants � and � given in Eq. 4.39. Evaluating the isospin factor for each decay

channel (see Section C.3) leads to

a(�+ ! p�0) =

s
2

3
~a(1=2)(�! N�)�

p
2

3
~a(3=2)(�! N�); (4.46)

a(�+ ! n�+) =
2p
3
~a(1=2)(�! N�) +

1

3
~a(3=2)(�! N�); (4.47)

a(�0 ! p��) = �
s
2

3
~a(1=2)(�! N�) +

p
2

3
~a(3=2)(�! N�); (4.48)

a(�0 ! n�0) =
1p
3
~a(1=2)(�! N�) +

2

3
~a(3=2)(�! N�); (4.49)

a(�� ! n��) = ~a(3=2)(�! N�): (4.50)

Constants from two decay modes are required to determine both T = 1=2 and T = 3=2

sets of reduced coupling constants. Only three of the �ve possible decay modes given

in Eqs. 4.46 - 4.50 have entries in Table 4.1. This is because the �0 decays primarily

through an electromagnetic mode which masks the weak mesonic decay. The three

remaining decay channels represented by Eqs. 4.46, 4.47 and 4.50 still overdetermine

the desired couplings. Determining couplings from each pair of decay channels leads

to the results of Table 4.3. Note that there is more variation among the reduced

coupling values for the sigma in Table 4.3 than for the lambda in Table 4.2. This

suggests that the �T = 1=2 rule is not as well satis�ed for sigma decays.
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4.3.2 Isospin Operators on the Baryon-Baryon Basis

The two-baryon state composed of a lambda spurion, j 1
2
� 1

2
i, and a nucleon, j 1

2
; � 1

2
i,

can couple to total isospin 1 or 0,

j~�Ni = j 1
2
� 1

2
i 
 j 1

2
mNi = ÆmN

1

2

(
1p
2
[j10i � j00i]

)
+ ÆmN� 1

2

j1�1i: (4.51)

If the j~�Ni state now undergoes a strong transition to the j~�Ni state, how much of

the j~�Ni = j1mi state is j( 3
2

1

2
)1mi and how much is j( 1

2

1

2
)1mi? Each of these states

decays di�erently, so the decomposition is important. This apparent ambiguity arises

because the strong interaction used in this work (NSC89) does not treat the hyperons

as spurions. For purposes of the strong interaction, the isospin of the �N state is

j�Ni = j00i 
 j 1
2
mi = j 1

2
mi; (4.52)

and couples unambiguously to a �N state with the same isospin,

j�Ni = j 1
2
mi: (4.53)

This state can be decomposed into j1m�i 
 j 12 mN i product states. Now the sigma

spurion can be introduced,

j1m�i ! j 1
2
� 1

2
i 
 j1m�i; (4.54)

and coupled to the nucleon. This completes the j�Ni ! j~�Ni transformation in an

unambiguous manner, and paves the way for calculation of the necessary ~Y N ! NN

weak transition matrix elements. The �nal result is,

j�Ni = j 1
2
mi ! j~�Ni = Æm 1

2

(
2

3
j( 3

2

1

2
)10i �

p
2

6
j( 1

2

1

2
)10i � 1p

2
j( 1

2

1

2
)10i

)

+ Æm� 1

2

(p
8

3
j( 3

2

1

2
)1� 1i � 1

3
j( 1

2

1

2
)1� 1i

)
: (4.55)

The details are presented in Appendix C.
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Eq. 4.55 may be formally rewritten in the same form as Eq. 4.51 for the j~�Ni
state,

j~�Ni = Æm 1

2

(
1p
2
[j10i � j00i]

)
+ Æm� 1

2

j1�1i; (4.56)

by de�ning,

j1mi �
s
8

9
j( 3

2

1

2
)1mi �

s
1

9
j( 1

2

1

2
)1mi; (4.57)

j00i � j( 1
2

1

2
)00i: (4.58)

Matrix elements for �-exchange

The transition potential for weak decay via virtual pion exchange is given by [42]

V�(~q) = �GFm
2
�

gNN�

2MN

�
A+

B

2 �MY
~�1 � ~q

�
~�2 � ~q
q2 + �2

T̂12 (4.59)

where
�MY � MN +MY

2
(4.60)

and

T̂12 =

8<
: ~�1 � ~�2 t = 1=2

~T1 � ~�2 t = 3=2
(4.61)

For the isospin transition operator, T̂ , used in this work, the matrix elements

of T̂12 on the two-baryon basis are determined to be,

h( 1
2

1

2
)0mj~�1 � ~�2j( 12 1

2
)0mi = �3 (4.62)

h( 1
2

1

2
)1mj~�1 � ~�2j( 12 1

2
)1mi = 1 (4.63)

h( 1
2

1

2
)1mj~T1 � ~�2j( 32 1

2
)1mi =

�4p
3
: (4.64)

These expressions, together with Eq. 4.59 and Eqs. 4.57 and 4.58 relate the �N !
NN matrix elements to those for �N ! NN .

T = 1 : h~�N jVPV jNNi
h~�N jVPV jNNi =

2
4
s
8

9

A
(3)
� hT = 1j~T1 � ~�2jT = 1i
A�hT = 1j~�1 � ~�2jT = 1i �

s
1

9

A
(1)
�

A�

3
5 (4.65)

= [�2:92 + 0:19] = �2:74
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� � ��

T = 0 T = 1 spin-dep spin-ind
PC 2.12 -0.76 -0.29 -0.16 0.58
PV -0.56 -2.74 -0.30 -0.16

Table 4.4: Ratio of the weak matrix elements V�N!NN to V�N!NN for meson ex-
changes for which coupling constants are available. The ratio is di�erent for the
spin-independent and spin-dependent parts of the central potential, but this only
a�ects the PC part of the �� meson.

h~�N jVPC jNNi
h~�N jVPC jNNi =

�M�

�M�

2
4
s
8

9

B
(3)
� hT = 1j~T1 � ~�2jT = 1i
B�hT = 1j~�1 � ~�2jT = 1i �

s
1

9

B
(1)
�

B�

3
5 (4.66)

= [�0:05 +�0:71] = �0:76

T = 0 : h~�N jVPV jNNi
h~�N jVPV jNNi =

A
(1)
�

A�

= �0:56 (4.67)

h~�N jVPC jNNi
h~�N jVPV jNNi =

�M�

�M�

B
(1)
�

B�
= 2:12: (4.68)

These ratios, collected in Table 4.4, show that the �N ! NN transition is comparable

to the �N ! NN transition. Note that the t = 3=2 contribution to Eq. 4.66 is small

compared to the t = 1=2 contribution. This is fortunate because B
(3)
� is poorly

determined (see Table 4.3).

Exchange of Strange Mesons

It is also possible to generate potentials for �N ! NN transitions which proceed via

an exchange of strange mesons (� and ��). The connection to the related �N ! NN

potential is simpler in this case because the weak coupling is at the NN vertex, which

is the same for each case. Only the strong �N� couplings are required to relate

the two decay modes. Table 4.4 shows that unlike for the pion case, weak decays

from a �N intermediate are always weaker than from a �N state when mediated

by strange mesons. Furthermore, except for the spin-independent part of the ��

central potential, all the ratios in Table 4.4 are negative. This results in a destructive

interference between decays from di�erent Y N states. For �� the spin-dependent and

spin-independent components of the T = 1 central channel interfere destructively and

are delicately balanced against each other already in the �N ! NN potential. So,
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while this channel actually gets a boost from the �N decay mode, this can only occur

because it was small (insigni�cantly so) to begin with.

Partial Widths

Assuming an initial s-state for the �N pair, six matrix elements contribute to the

sum in Eq. 4.32:

T = 0 : 3S1 ! 3S1;
3S1 ! 3D1;

3S1 ! 1P1

T = 1 : 1S0 ! 1S0;
1S0 ! 3P0;

3S1 ! 3P1: (4.69)

Partial widths for purely central (S ! S), tensor (S ! D) and PV (S ! P ) decays

may be de�ned by summing an appropriate subset of terms. Partial widths of de�nite

isospin may also be de�ned by

�tot =
1

2

X
T

(2T + 1)�T : (4.70)

These partial widths are closely related to an important observable: the ratio of

the neutron-induced decay width, �n, to the proton-induced decay width, �p. From

Eq. 4.51,

�n = �1

�p =
1

2
(�0 + �1): (4.71)

4.4 Lambda Decay Width: No Form Factor or

Correlations

The simplest approximation to non-mesonic lambda decay in NM involves a weak in-

teraction incorporating only �-exchange and no consideration of vertex Form Factors

(FF) or correlations. This calculation has been performed previously by several other

authors [40, 13] as a starting point on the way to more comprehensive treatments

of the non-mesonic decay. Only transitions from an initial relative S-state are con-

sidered. The decay width is divided into central, tensor and parity-violating partial

widths in Table 4.5. For comparison, results from Ref. [40] are presented in Table 4.7
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FF SRC S ! S S ! D S ! P Total
None None 0.01 1.54 0.68 2.23
sing None 0.18 0.69 0.31 1.18
dbl None 0.27 1.01 0.45 1.74
dbl fHC 0.02 1.12 0.43 1.57
dbl fSC 0.11 0.96 0.39 1.46
dbl tensor 0.21 1.05 0.43 1.69
dbl sigma 1.30 1.75 0.35 3.40

Table 4.5: Partial decay widths in units of �free, considering only �-exchange. Various
combinations of FF and initial state correlations are considered, but no �nal state
correlations.

FF SRC �0 �1 �n=�p
None None 3.77 0.23 0.11
sing None 1.88 0.16 0.16
dbl None 2.75 0.24 0.16
dbl fHC 2.69 0.15 0.11
dbl fSC 2.39 0.18 0.14
dbl tensor 2.87 0.17 0.11
dbl sigma 6.36 0.15 0.05

Table 4.6: Partial decay widths in units of �free, considering only �-exchange. Various
combinations of FF and initial state correlations are considered, but no �nal state
correlations.
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FF SRC S ! S S ! D S ! P Total
None None 0.01 3.12 1.00 4.13

Table 4.7: Partial decay widths in units of �free from Table II in Ref. [40]. Compare
with �rst line of Table 4.5.

for what is essentially the same calculation.

It should be noted that in the absence of strong SRC, the central contribution

to the total decay width is sensitive to the delta-function part of the �-exchange

potential. Typically it is assumed that SRC cause the relative Y N wavefunction to

vanish at small distance, eliminating the delta-function contribution. As a result, it

is often customary to exclude the delta-function part of the �-exchange potential, a

priori, when calculating the decay width for the unphysical case of no FF and no

SRC. This custom is followed in Tables 4.5, 4.6 and 4.7.

The evident discrepancy between the �rst line of Table 4.5 and Table 4.7 is the

result of a number of conspiring factors. In order of importance:

� The decay width is directly proportional to the mass of the nucleon which

\catalyzes" the decay (Eq. 4.32). In Ref. [40] the free nucleon mass is used,

while Eq. 4.32 employs an e�ective mass which is 27% smaller.

� A factor of �MY
�1

appears in the PC term of the weak �-exchange potential,

Eq. 4.59, which is the result of a non-relativistic reduction from a well-de�ned

amplitude. In Ref. [40], the replacement �MY !MN is made, resulting in a 20%

increase in the PC partial widths.

� A slightly larger strong coupling constant is used in Ref. [40]; gNN� = 14:4

compared to gNN� = 13:3.

� A slightly larger weak PC coupling constant is used in Ref. [40]; B� = �7:21
compared to B� = �7:15.

Taking these di�erences into account, the results of Tables 4.5 and 4.7 can be recon-

ciled to within 10%.
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4.5 Vertex Form Factor

Without a FF, the �-exchange potential is singular at the origin, not merely in the

central channel where there is a delta-function, but in the tensor channel as well. This

unphysical behavior comes from treating the BBm vertex as pointlike. Inclusion of

a FF damps the potential smoothly at high relative momentum, e�ectively taking

into account the internal structure and �nite size of the BBm vertex. A standard,

mathematically convenient choice for the vertex FF is a monopole form,

�(q2;m�;��) =
�2
� �m2

�

�2
� + q2

; (4.72)

with a cuto� mass, �� = 1300 MeV, taken from the J�ulich Y N potential [47]. Fol-

lowing Ref. [41], a monopole FF is used at each vertex. Other authors [40, 48] use a

single monopole FF for both vertices, but also a smaller cuto� mass, �� = 626 MeV.

The e�ect of a FF, with these cuto� masses, on the various channels of the weak

�-exchange potential can be seen directly in Figs. 4.3, 4.4 and 4.5.

The FF regularization e�ectively broadens the delta-function component of

the central potential as can be inferred from Fig. 4.3. This yields a more di�use

interaction which will not be as sharply cut by a strong central correlation. Since

the �-exchange potential is no longer singular after inclusion of a FF, contributions

derived from the delta-function part of the central potential must be included. For

this reason, no direct comparison for the central channel can be made between the

results of Table 4.5 derived with and without a FF. Though less singular than the

central potential, the tensor and parity-violating channels are also suppressed at short

range (r < 2 fm) by the FF. This e�ect, seen clearly in Figs. 4.4 and 4.5, is mirrored

in the results of Table 4.5.
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r (fm)

−6.0e−06
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r2 V
C

Figure 4.3: Weak �-exchange potential in the central channel. Each curve corresponds
to a di�erent choice of FF: none (dot), single monopole (dash) and double monopole
(dot-dash). When comparing plots of the central potential with and without FF, it
is important to remember that there is an attractive delta-function component to the
potential without FF which is not shown in the above �gure.
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Figure 4.4: Weak �-exchange potential in tensor the channel. Each curve corresponds
to a di�erent choice of FF: none (dot), single monopole (dash) and double monopole
(dot-dash).
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Figure 4.5: Weak �-exchange potential in the parity-violating channel. Each curve
corresponds to a di�erent choice of FF: none (dot), single monopole (dash) and double
monopole (dot-dash).
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Chapter 5

E�ects of Strong Correlations on

Weak Decay

Strong interactions result in the �N pair becoming correlated prior to non-mesonic

decay. The situation is illustrated in Fig. 5.1 where an e�ective weak interaction is

de�ned by allowing the initial �N pair to be correlated by the G-matrix e�ective

strong interaction.

5.1 Simple Correlations

The momentum-space matrix elements which determine the decay width (Eq. 4.32)

may be expressed in terms of wavefunctions for the initial and �nal states,

hq0J(L0S 0)T jV wjqJ(LS)T i =
Z
drr2 �L0(q0r)| {z }

�nal

hrJ(L0S 0)T jV wjrJ(LS)T i�L(qr)| {z }
initial

:

(5.1)

= +w w

w

Figure 5.1: E�ective weak interaction incorporating strong correlations in the initial
�N state.
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In a typical calculation of the decay width, correlations in the initial �N state are

accounted for by making the replacement

�L(qr)! 	JT
L (qr) � fJTL (r)�L(qr); (5.2)

where a state-dependent correlation function, fJTL (r), has been introduced.

As an example, Ref. [41] implements such a scheme to account for initial state

correlations in the non-mesonic decay of p-shell hypernuclei. They use a correla-

tion function obtained from a microscopic NM calculation [49] which utilizes the

Nijmegen D hard-core potential. At least for this particular hard-core potential, a

state-independent parameterization provides a good �t to correlation functions de-

rived for either S-state. Because a potential with an in�nite core is used in the

derivation, the resultant correlation function vanishes at small distance, as can be

seen in Fig. 5.2. The e�ect of this simple, \hard-core," correlation function, fHC , on

the decay width is presented in Table 4.5.

Correlation functions derived in a similar manner, but using the NSC potential,

are plotted in Fig. 5.2 and their e�ect on the decay width is presented in Table 4.5

under the heading fSC . The softness of the NSC potential means weaker correlation

functions and di�erent shapes for the two S-states.

The decay width can be sensitive to these modi�cations at small r because the

weak interaction is intrinsically short range in nature. The high �nal state momentum

sets a range on the order of

r0 � �hc

qf
� 0.5 fm: (5.3)

The central potential is of shortest range and is expected to be most signi�-

cantly a�ected by a correlation function. Table 4.5 shows that this is indeed the case,

especially for fHC , which virtually eliminates the contribution from the central chan-

nel. However, the total decay width is dominated by the S ! D transition which is

a�ected more modestly by the presence of a correlation function. The net result is a

decrease in �tot of 10-15% when a correlation function is used. Actually, the stronger

correlation function, fHC , decreases �tot less than fSC . The reason for this can be

seen in Fig. 5.2. At short range (dominantly the central channel) fHC cuts more

sharply than fSC , but at longer range (tensor channel) fHC provides a compensating

enhancement over fSC .
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Figure 5.3: Strong correlations between the �N pair prior to weak decay leads to
several intermediate states from which the weak transition can subsequently proceed.

5.2 Beyond Diagonal Correlations

The treatment of correlations presented in the previous section is conveniently simple

to implement, but incomplete and ultimately inadequate for describing non-mesonic

decay. The essential problem is the coupling of channels by the strong interaction

which correlates the Y N system. There is a signi�cant tensor component to the

NSC89 potential which mixes angular momentum states, and a strong coupling be-

tween �N and �N channels as well. A consequence of this strong coupling is the

possibility of signi�cant D-state and/or �N components mixed into the correlated

initial �N S-state, as illustrated schematically in Fig. 5.3.

In order to determine what fraction of the correlated �N S-state is composed

of \other" components and whether or not their admixture is large enough to result in

a non-negligible contribution to the non-mesonic decay parameters, an examination

of the correlated wavefunction is required.
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5.2.1 Correlated Relative Wavefunction

The e�ective weak interaction (Fig. 5.1) may be expressed in operator form as

V w
eff = V w + V w �Y N


�H0 + i�
G: (5.4)

When this operator acts on an uncorrelated �N state, j�ii, the expression

V w
eff j�ii = V wj�ii+ V wj�ji �Y N


� Ej + i�
h�jjGj�ii (5.5)

is obtained. The repeated index indicates a sum over a complete set of Y N states,

fj�jig, which have been inserted in the last term. The correlated state, j	ii, is
naturally de�ned by,

V w
eff j�ii � V wj	ii; (5.6)

which leads to the following expression for the correlated wavefunction

j	ii = j�ii+ j�ji �Y N


� Ej + i�
h�jjGj�ii

� (Æij + cij)j�ji: (5.7)

The implicit sum extends over all states which can couple to the initial state via the

strong interaction. For example, if the initial state is �N 3S1, then the correlated state

has four components, �N 3S1, �N
3D1, �N

3S1 and �N 3D1 (Fig. 5.3). In contrast,

the simple correlation function of Section 5.1 yields a correlated wavefunction of the

form

j	ii = fÆijj�ji; (5.8)

and can only account for diagonal correlations, i = j, implicitly ignoring other terms

which appear in Eq. (5.7).

5.2.2 Defect Wavefunction

A decision on which terms in Eq. (5.7) should be kept requires some measure by

which they can be compared. It is convenient to isolate the parts of the correlated
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wavefunction which are due solely to the presense of SRC by de�ning the defect state

j�ii � j	ii � j�ii
= cijj�ji: (5.9)

The defect wavefunction has the virtue of being non-zero only in a �nite range where

the strong SRC are in e�ect (Figs. 5.4 and 5.5). These components of the correlated

wavefunction are integrable and are the basis for de�ning a measure of the strength

of correlations in each channel: the wound integral [50]. Details of the wound integral

calculation are presented in Appendix D.

The magnitude of the defect wavefunction corresponding to a given channel

is not enough by itself to determine whether or not the channel in question will

contribute signi�cantly to the decay width. The relative strength and range of the

weak potential for each channel is also critically important in determining its overall

impact on the decay width.

5.2.3 Components of the Weak E�ective Matrix Element

The e�ective weak matrix element is related to the correlated wavefunction by con-

volution with a matrix element of the bare weak interaction. Eq. (5.1), generalized

for this case of an e�ective weak interaction containing a more intricately correlated

initial state, becomes

hq0J(L0S 0)T jV weff
Y Y 0 (Q;
)jqJ(LS)T i =X

L00Y 00

Z
drr2�L0(q0r)hrJ(L0S 0)T jV w

Y 0Y 00 jrJ(LS)T i	JTY Y 00

LL00 (qr;Q;
): (5.10)

The �-exchange portion of the �N -NN transition potential is derived in Section 4.3

and found to be comparable to the �N -NN potential (Table 4.4). Since this is

the case, the transition through the intermediate �N state cannot be ignored and

may yield a signi�cant contribution to both the overall decay rate and its isospin

structure. The integrand of Eq. (5.10) is split into two pieces, the correlated initial

state wavefunction as one component and the balance of the integrand for the other.

They are plotted together as a function of r in Figs. 5.6-5.8, one plot for each of

the four possible Y N states intermediate between an initial �N 3S1 state and �nal

NN 3S1,
3D1 and 1P1 states. The amplitudes for decay through each available
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Figure 5.4: Defect wavefunction components of the correlated �N 3S1 state; evaluated
at the average value of the �N relative momentum used in Section 4.2.1. For com-
parison, the uncorrelated wavefunction, �(qr), is just a normalized spherical bessel
function, j0(qr). Because of the small relative momentum, q � 70 MeV/c, �(qr) � 0:8
for the range shown.
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Figure 5.5: Defect wavefunction components of the correlated �N 1S0 state; evaluated
at the average value of the �N relative momentum used in Section 4.2.1.

intermediate state are collected in Table 5.1. Also included is the amplitude for the

direct decay, as would be expected from an uncorrelated state. The sum of these

contributions determines the total decay amplitude for each channel.

For example, the �rst line of Table 5.1 breaks down the 3S1 ! 3S1 decay am-

plitude according to how much each portion of the correlated initial state contributes.

The �rst column shows the decay amplitude in the absence of any correlations. The

second column indicates a large reduction due to diagonal correlations, as would be

observed with a simple correlation function, such as those discussed in Section 5.1.

Likewise the �rst two entries in the second line show the uncorrelated decay amplitude

for the direct tensor transition, 3S1 ! 3D1, and the small reduction caused by the di-

agonal SRC. The e�ects of these diagonal correlations is shown graphically in Figs. 5.6

and 5.7. Fig. 5.6 illustrates the large e�ect a wave-function depleted by correlations at

short range has when paired with the very short range central potential. Conversely,

Fig. 5.7 indicates the poor overlap between the \hole" in the correlated wave-function

and the tensor potential, especially as modulated by the wavefunction for the �nal

NN D-state. In general, Figs. 5.6-5.8 illustrate the similarity between the range over

which the defect wave-function is non-zero and the range of the weak potential. This

is a consequence of the fundamental similarities between the hypernuclear weak and

strong interactions. Both share similar underlying meson-exchange structures which

lead to comparable ranges. This range correspondence makes possible the signi�cant
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wavefunction, �0(qr), plotted together with correlated initial state wavefunctions.
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No SRC �N S �N D �N S �N D Total
3S1 ! 3S1 -2.82 1.29 -1.35 -0.84 -4.90 -8.62
3S1 ! 3D1 -7.73 0.20 -0.34 -0.93 -1.37 -10.16
3S1 ! 1P1 3.65 -0.29 0.43 -0.21 -0.44 3.13
1S0 ! 1S0 -2.82 0.81 0.00 0.49 0.00 -1.52
1S0 ! 3P0 2.11 -0.01 0.00 -0.07 0.00 2.03
3S1 ! 3P1 -1.72 0.14 0.10 0.49 -0.51 -1.50

Table 5.1: Each row corresponds to one of the six possible transitions from an initial
�N S-state to a �nal NN state. For each channel, the matrix element for decay
from an uncorrelated state is given �rst, and then the components of the e�ective
weak matrix element corresponding to a transition through one of the four possible
intermediate Y N states, followed by the total. Matrix elements are given in units of
1:0 x10�13 MeV�2.

contributions to the decay amplitude from decays proceeding through intermediate

states as a result of SRC. As a result, at least some of the entries in Table 5.1 cor-

responding to correlation-induced transitions through intermediate Y N states have

large enough magnitudes to signi�cantly impact the uncorrelated amplitudes.

5.2.4 Diagonal Correlations

The �N S-state column in Table 5.1 shows the e�ect of diagonal correlations on

the decay amplitudes for each channel. As expected, these are substantial only for

the S ! S transitions where the weak potential and �nal state wavefunction are of

shortest range. The decay amplitude in the 3S1 ! 3S1 channel is cut by almost 50%

while the 1S0 ! 1S0 channel is cut by just under 30%. The di�erence is a result of

the weaker correlations in the 1S0 channel producing a smaller defect wavefunction.

5.2.5 Tensor Correlations

The strong tensor correlations present in the �N system lead to a small, relatively

broad, D-state component in the initial state wavefunction as shown in Fig. 5.4.

Although this piece of the correlated wavefunction is small, the tensor interaction

coupling the intermediate D-state to the �nal S-state is considerably stronger than

the corresponding central interaction as evidenced by Figs. 4.3 and 4.4. These o�-

setting factors combine to yield contributions to the decay amplitude of a magnitude

similar to those arising from diagonal correlations but of opposite sign. The sign
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di�erence is a result of the di�erent origin of the �N S-state defect wavefunction

compared to the other pieces of the correlated wavefunction. Diagonal correlations

serve to cut strength from the initial channel, resulting in a negative amplitude for

the defect wavefunction, and this strength subsequently reappears in the other cou-

pled channels, manifest as wave function components with a positive amplitude. The

result is that tensor correlations largely compensate the reductions brought about by

diagonal correlations. Of course the tensor interaction does not operate in the J = 0

channels, so the 1S0 channel still feels the e�ects of the diagonal correlations.

Including decays from the �N relative D-state leads to the \tensor" widths in

Tables 4.5 and 4.6. Table 4.5 shows that decay widths cut by diagonal correlations

are restored almost completely by tensor correlations. This is true for each of the

composite channels (S ! S, S ! D and S ! P ) as well as the total decay width.

Though diagonal correlations lower the total decay width by 15% from the uncor-

related value, inclusion of tensor correlations leaves a reduction of only 2-3%. To

the extent that initial state correlations are important at all at the level of diagonal

correlations, tensor correlations will be just as important, and work to counter any

suppression of the decay amplitude caused by diagonal correlations. This con�rms

that the simple correlation function, as de�ned in Eq. (5.8) does not lead to an ad-

equate representation of the correlated wavefunction. If initial state correlations in

the �N system are important enough to be considered, then a more general method

of including correlations, Eq. (5.7), should be implemented.

5.2.6 Decays from an Intermediate �N State

In the previous section, it was shown that tensor correlations in the �N sector are

strong enough to demand a �N D-state component when constructing a correlated

initial state wavefunction. Correlations are even stronger between the initial �N

S-state and �N intermediate states. The �N components of the correlated initial

state wavefunction are comparable to and even slightly larger than the �N D-state

component (Fig. 5.4). Furthermore, the weak transition from these �N intermediate

states is more than twice as strong as the corresponding �N ! NN decay in several

channels. The result is a large amplitude for decays proceeding through the �N

intermediates, particularly for the T = 0 channels where the tensor interaction plays

such a dominant role. Including decays from intermediate �N states leads to the
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\sigma" widths in Tables 4.5 and 4.6. The key feature to note is a doubling of the

total decay width when sigma correlations are included. Both the S ! S and S ! D

channels see signi�cant increases, especially the central channel, which now rivals the

tensor channel. The central channel sees such a large boost from the presence of �N

intermediates because of the two tensor transitions involved in the multi-step decay.

Conversion to a �N intermediate via the strong tensor force is followed by a weak

decay which also involves a tensor force,

�N 3S1
s! �N 3D1

w! NN 3S1: (5.11)

In contrast, the net S ! D channel involves only a single tensor transition, weak or

strong depending on whether the intermediate is an S-state or a D-state. Note that

this increase comes from the T = 0 channels, and from Table 4.4 the �N ! NN

potential has the same sign as its �N ! NN counterpart. As a result, amplitudes

for decays in the two T = 0 channels add constructively.

5.3 Exchange of Heavy Mesons

5.3.1 Interference: Pion and Kaon

At the beginning of this chapter, non-mesonic decay via virtual pion exchange was

discussed. If the exchange of heavier mesons is considered, the decay properties of

the lambda can be altered. Strange mesons, in particular, are expected to contribute

to a higher �n=�p ratio by virtue of their isospin structure. Table 5.2 shows that the

kaon by itself has a ratio of over 1 before correlations are considered, and dropping

only to 0.65 even after correlations have taken their toll. These values lie in a range

comparable to experimental values (Table 5.6). This is in contrast to the pion-only

results, which are substantially lower than both the kaon and experimental ratios,

primarily because of the strong pionic tensor component. Unfortunately, hope of

bridging the gap between the pion numbers and experimental decay parameters by

adding kaon decay into the mix are hampered by the relative weakness of the kaon

potential. Though the T = 1 decay channels are comparable to the T = 0 channels

for the kaon, resulting in a relatively large �n=�p ratio, they are both dominated by

the T = 0 channels of the pion, which are fed by its large tensor potential. This can

be clearly seen in Fig. 5.11 where the pion dominates the kaon in the tensor channel,
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Mesons SRC �0 �1 �n=�p
� None 2.75 0.24 0.16
� fSC 2.39 0.18 0.14
� tensor 2.87 0.17 0.11
� sigma 6.36 0.15 0.05
� None 0.11 0.14 1.12
� fSC 0.09 0.06 0.81
� tensor 0.11 0.06 0.68
� sigma 0.09 0.04 0.65

� + � tensor 4.10 0.23 0.11

Table 5.2: Partial decay widths in units of �free, for the pion and kaon. A double
monopole FF is used in all cases together with various choices for the initial state
correlations. No �nal state correlations are included.

Meson S ! S S ! D S ! P Total
� 0.27 1.01 0.45 1.74
� 0.01 0.01 0.01 0.03
� 0.19 0.04 0.05 0.27
� 0.13 0.04 0.03 0.20
! 0.58 0.01 0.01 0.60
�� 0.48 0.03 0.21 0.72
ALL 5.06 0.66 1.50 7.22

Table 5.3: Partial decay widths in units of �free, considering di�erent meson-
exchanges. A double monopole FF is used in all cases. No initial or �nal state
correlations are included.

especially once convolution with the l = 2 �nal state wave function is considered

(Fig. 5.15).

5.3.2 No Correlations

Before correlations are considered, mesons beyond the pion alter the decay widths

signi�cantly. As shown in Table 5.3, the central, S ! S, channels are increased the

most by the new decays, raising this partial width by a factor of almost 20 from 0.27

for the pion alone to over 5.0 for the collection of mesons taken together. This strong

constructive interference shows through in Fig. 5.9, where the weak potential for all

mesons in the T = 1 central channel are plotted. The T = 0 central potentials are

plotted in Fig. 5.10, though they do not contribute signi�cantly to the total S ! S

decay width. In this case, destructive interference results in a contribution to the
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decay width well below that of the pion alone. Many mesons have substantial decay

widths in these channels, and they interfere constructively to dominate the overall

decay in the absence of moderating SRC.

Though no individual meson approaches the strength of the the pionic ten-

sor interaction, destructive interference cuts this partial width in half nonetheless

(Fig. 5.10). Likewise for the parity violating channels (Figs. 5.12, 5.13 and 5.14),

though here the �� meson does possess a strength comparable to the pion. The �nal

result is that the central channels now dominate over the tensor channel and the

total decay width is increased by over a factor of four. Note that this dominance of

the decay width by the central channels, speci�cally the T = 1 channel, leads to a

dramatic increase in the �n=�p ratio. The ratio increases to 1.01, seeming to validate

the inclusion of mesons beyond the pion for the purpose of reaching an agreement

between experiment and theory. However, it will be seen that this agreement only

lasts until initial-state correlations are considered.

5.3.3 Diagonal Correlations

Inclusion of initial state correlations at the level of diagonal correlations changes this

picture. Mesons heavier than the pion are likewise of shorter range than the pion, and

feel the cut of SRC more strongly (Table 5.4). The result is a reduction in the partial

width involving the central channels by more than a factor of 3, bringing them more in

line with other contributing channels (tensor and PV). This is in contrast to the pion

only case where diagonal correlations cut an already small central contribution. The

parity-violating partial width is also reduced by a factor of 1/3 and the tensor width

is essentially una�ected. Now the central channels are still the largest contribution,

and the parity-violating (tensor) channels are still larger (smaller) respectively than

for the pion-only case. The result of diagonal correlations is a reduction of the overall

width by more than half, yet still leaving it more than twice the size of the decay

width for the pion alone at this level of correlation.

5.3.4 Tensor Correlations

Tensor correlations have only a modest e�ect, as was the case for the pion alone.
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Mesons SRC S ! S S ! D S ! P Total
� None 0.27 1.01 0.45 1.74
� fSC 0.11 0.96 0.39 1.46
� tensor 0.21 1.05 0.43 1.69
� sigma 1.30 1.75 0.35 3.40

ALL None 5.06 0.66 1.50 7.22
ALL fSC 1.51 0.68 1.10 3.29
ALL tensor 1.50 0.72 1.28 3.50
ALL sigma 1.43 1.30 1.07 3.80

Table 5.4: Partial decay widths in units of �free, considering di�erent meson-
exchanges. A double monopole FF is used in all cases together with various choices for
the initial state correlations. Note that in the last line, decays from intermediate �N
states are included only for those mesons for which appropriate coupling constants
are available: �, �, and ��. No �nal state correlations are included.

5.3.5 Sigma Correlations

Opening the �N ! NN decay channel via the � and �� mesons in addition to the

direct path from the �N initial state also only has a modest a�ect on the overall

decay width, unlike what is observed for the pion alone. The tensor decay width is

increased by almost a factor of 2, even more than in the case of the pion alone, but

the width derived from the central channels actually decreases. This is in contrast

to the marked increase for the pion alone, which sees the central channel rise from

insigni�cance to rival the tensor channel when decays from the �N intermediate are

considered. The di�erence can be attributed to two things. Though the �N
�! NN

decay is a very strong decay channel which serves to increase the tensor partial width,

this channel is no longer dominant, so its increase does not a�ect the overall width

as much. The central channel also feels this particular decay channel strongly, but

interference with other mesons serves to wash out its contribution, unlike for the case

of the pion alone. In the end, the overall decay width sees a modest 10% increase.

This in comparison to the 100% jump this new channel brings to the pion decay

mode.

5.3.6 Comparison: Finite Nuclei

Experimental results are available for medium and to a lesser extent heavy nuclei.

Theoretical calculations have also been performed directly for �nite systems, such
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Figure 5.9: Weak Potential for all mesons in Central Channel. Weak potential for
each meson in the central 1S0 ! 1S0 channel. Double monopole form factor included.
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Mesons SRC �0 �1 �n=�p
� None 2.75 0.24 0.16
� fSC 2.39 0.18 0.14
� tensor 2.87 0.17 0.11
� sigma 6.36 0.15 0.05

ALL None 2.91 0.52 0.30
ALL fSC 2.26 0.42 0.31
ALL tensor 2.90 0.38 0.23
ALL sigma 5.20 0.49 0.17

Table 5.5: Partial decay widths in units of �free for the case of the full complement
of mesons compared with the pion alone. Note that for the last line, only the pion
and strange mesons have �N decay components included. A double monopole FF is
used in all cases together with various choices for the initial state correlations. No
�nal state correlations are included.
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Figure 5.10: Weak Potential for all mesons in Central Channel. Weak potential for
each meson in the central 3S1 ! 3S1 channel. Double monopole form factor included.
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Figure 5.11: Weak Potential for all mesons in Tensor Channel. Weak potential for
each meson in the tensor 3S1 ! 3D1 channel. Double monopole form factor included.
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Figure 5.12: Weak Potential for all mesons in Parity-Violating Channel. Weak po-
tential for each meson in the parity-violating 1S0 ! 3P0 channel. Double monopole
form factor included.
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as 12
� C [51], and indirectly for heavier systems using a Local Density Approximation

(LDA) [52]. Collisions of protons on heavy nuclei (Au, Bi, U) have been conducted

recently and yield a measure of the lifetime of heavy �-hypernuclei [53]. This leads

to a decay width of � = 1:8 for heavy hypernuclei. This compares with a value of

close to 1 for a lighter hypernucleus such as 12
� C. Presumably, the total decay width

measured for heavy hypernuclei should be directly comparable to a NM calculation.

One caveat could be the fact that actual heavy hypernuclei have a N/Z ratio signif-

icantly larger than unity [54]. This of course depends on the �n=�p ratio. Another

connection between the realms of high and low A hypernuclei can be forged with

the aid of the LDA. This tool provides a rough but direct connection between results

calculated for NM and relatively low mass hypernuclei which are more accessible both

experimentally and for direct theoretical analysis. The total decay width for a system

with an average density corresponding to 208
� Pb is �tot = 1:59 and for a system with

a density pro�le approximating that of 12
� C, the width is �tot = 1:29. These two

methods give a decrease in total width of something in the neighborhood of 20-45%

when one compares a heavy system with a light one. This connection allows �nally

a comparison between the nuclear matter results of this work and calculations per-

formed directly for lighter �nite nuclei such as 12
� C. A further caution concerning the

comparison of nuclear matter results with those of a �nite nucleus: the initial state

wavefunction. The relative wavefunction between the interacting �N pair is di�erent

in nuclear matter compared with a �nite system. In particular, the average lambda

momentum is not zero as assumed in the nuclear matter calculations. Perhaps this

increase in the average � momentum is washed out by the fermi distribution of mo-

mentum of the nucleons which stimulate the non-mesonic decay. Any trend could

be simply investigated by varying the momentum of the decaying �-hyperon, though

that has not been done in this work.

5.3.7 �n=�p: Experiment vs Theory

One of the primary observables associated with non-mesonic lambda decay is the

ratio of the neutron induced partial width, ��n!nn, to the proton induced partial

width, ��p!np. There is a longstanding discrepancy between theory and experiment

concerning this ratio. Experimentally this value has been close to unity with large

error bars which have recently narrowed in a new analysis [55]. Theoretically the
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ratio has been signi�cantly lower, a value of 0.1 typical for calculations dominated by

pion exchange. The strong tensor force of the pion inevitably leads to a dominance of

the T = 0 �nal states and a subsequently low �n=�p ratio. Invoking the �N ! NN

decay channel can not resolve the discrepancy with experiment because this decay is

also dominated by the tensor interaction, resulting in a further boost to �p. Likewise,

uncertainty in the � � � coupling strength cannot hope to improve agreement with

experiment if decay is mediated by pions.

The literature contains a number of approaches to this problem. If the �I =

1=2 rule is violated, then it may be possible to lessen the dominance of the pion's

tensor channel [56]. Direct quark models which circumvent the �I = 1=2 rule have

also been proposed [57]. In addition to purely theoretical e�orts, the models and

assumptions used in the experimental analyses have been examined. Final state

interactions a�ect the nucleon energy distribution, and charge exchange can shift the

ratio of neutrons to protons found in the �nal state. Uncertainty concerning the

impact of these processes casts a fuzzy shadow over the quoted experimental values

for �n=�p. It is partly due to the employment of a monte carlo model [58] to account

for FSI that error bars on this important observable have decreased recently [55]. Still,

experiments new and old favor a value of �n=�p � 1 and discount a pion dominated

decay.

It is natural to look to mesons other than the pion for contributions to the non-

mesonic decay which might preferentially populate T = 1 �nal states. In particular, a

meson lacking a strong tensor component would be a candidate for consideration. As

an example, a simple examination of the kaon coupling constants leads to an expected

ratio of �1=�0 � 40 considering only the two central channels. Using Eq. (4.71),

this leads to a �n=�p ratio near the maximum possible value of 2. However, this

estimate implicitly assumes that the central channels dominate the kaon mediated

decay, which turns out not to be the case. Even before correlations are considered,

the decay amplitude for the kaon tensor channel turns out to be comparable to the

T = 1 central channel. Taking all channels together, including the non-negligible PV

decay channels, the �1=�0 ratio is sharply reduced to a value of 1.27, yielding �n=�p =

1:12. Initial-state correlations lower this value to 0.81 for diagonal correlations and

further to 0.65 at the level of sigma correlations. Though marginally lower than the

experimental value, this shows that a meson with a di�erent potential structure from

the pion can positively a�ect the decay observables.
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Theory/Expt. Note �n=�p Source
theory � 0.093 [51]
theory � + � 0.210 [51]
theory all 0.181 [51]
expt. 1N and 2N 0:96+0:10+0:22�0:09�0:21 [55]
expt. 1N 1:17+0:09+0:20�0:08�0:18 [55]
expt. 1:87� 0:59+0:32�1:00 [59]
expt. 1:33+1:12�0:81 [60]

Table 5.6: �n=�p for the
12
� C hypernucleus. The 1N and 2N result assumes a value of

�2=�nm = 0:32.

Finally, it is worth pointing out that while the most recent experimental values

for the �n=�p ratio are more precise than in the past, they are also very model

dependent. In particular, it is not clear how to reinterpret these results in light of a

signi�cant contribution from sigma decays.
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Chapter 6

Conclusions

The spectral function for a �-hyperon is calculated for the �rst time in this work. The

structure is very similar to what is found for a nucleon; a comparison which should

be made more fully. The chief di�erence is the coupled channel element which gives

rise to threshold e�ects in the lambda self-energy and spectral function. This behav-

ior could be understood more fully by forging an analytic connection to established

results for coupled channels in scattering theory. The details of the spectral distri-

bution of a lambda can also have modest consequences for hypernuclear production

probabilities and the mesonic decay width in a nuclear medium. The mesonic width,

while Pauli suppressed in a nuclear environment despite strong correlations, may well

show sensitivity to details of the lambda strength distribution.

For this work, only the nucleon energy spectrum is utilized. A more sophisti-

cated calculation would include a detailed nucleon spectral function folded into the

calculation of the lambda self-energy. A fully self-consistent calculation would be a

logical, though considerably larger, step forward in terms of calculational complexity.

In general, the more important correlations become for a system, and the farther

a�eld from an independent particle description one ventures, the more necessary it

becomes to embrace correlations in a fully self-consistent manner. It is not clear that

the hypernucleus warrants this type of consideration.

Though nuclear matter calculations o�er many technical advantages, in the

end it is bene�cial to make as close a comparison to experiment as possible. To this

end, calculations for a �nite system would be a logical next step. In the interest of

a well-understood comparison to experiment, a reanalysis of 12
� C decay taking into

account decay from �N states would be welcome.
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Finally, as has been noted, relatively new baryon-baryon potentials are avail-

able which explore the freedom one currently has in de�ning the �-� coupling. Insert-

ing these new potentials into the present calculational framework would be a simple

way to translate this freedom in the Y N potentials to variability in the lambda decay

observables.
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Appendix A

Calculation of the G-matrix

A.1 Calculational Details

As mentioned previously, the natural sp basis for an in�nite system consists of eigen-

states of momentum, spin and iso-spin (Eq. 2.12),

j�i � j~k sms tmt;Bi; (A.1)

where B denotes the species of baryon. The question of how to combine the individual

� and N sp bases to form the �N two-particel basis is answered by considering

the symmetries of the two-body interaction. The NSC89 interaction conserves total

momentum,
~Q � ~k� + ~kN ; (A.2)

total spin,

S � s� + sN ; (A.3)

total iso-spin,

T � t� + tN ; (A.4)

and total angular momentum,

J � Lrel + S; (A.5)

where Lrel refers to the relative orbital angular momentum of the two particles. These

properties are used to reduce the dimensionality of the G-matrix integral equation

prior to its numerical solution.
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In terms of the product states,

j~kY~kNi � j~kY i 
 j~kNi; (A.6)

the diagrammatic G-matrix equation may be translated to

h~k3~k4;Y3N4jG(
)j~k1~k2;Y1N2i = h~k3~k4;Y3N4jV j~k1~k2;Y1N2i
�X

Y5

Z d!5
2�i

Z d3k5
(2�)3

Z d3k6
(2�)3

h~k3~k4;Y3N4jV j~k5~k6;Y5N6ig0Y5(~k5;!5)g0N6
(~k6; 
� !5)

h~k5~k6;Y5N6jG(
)j~k1~k2;Y1N2i: (A.7)

The conserved total energy, 
 � !1 + !2; has been introduced in Eq. A.7, and spin

and isospin labels have been suppressed for clarity.

This equation may be formally simpli�ed by introducing the reduced two-

particle propagator for the intermediate Y N state:

gIIY5N6
(~k5; ~k6; 
) � �

Z d!5
2�i

g0Y5(
~k5;!5)g

0
N6
(~k6; 
� !5): (A.8)

Conservation of total momentum suggests a change of variables to total mo-

mentum,
~Q � ~k1 + ~k2 = ~k3 + ~k4 = ~k5 + ~k6; (A.9)

and relative momentum,

~qi � (
�Y
mN

)~k4 � (
�Y
mY

)~k3 (A.10)

~qf � (
�Y
mN

)~k2 � (
�Y
mY

)~k1 (A.11)

~q0 � (
�Y
mN

)~k6 � (
�Y
mY

)~k5: (A.12)

The reduced mass for the Y N system has been introduced as

�Y � mYmN

mY +mN
: (A.13)

The single particle momenta may be expressed in terms of the new variables as

~k1 = ~QY � ~qi (A.14)
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~k2 = ~QN + ~qi (A.15)

... (A.16)

using the notation,

~QY � (
�Y
mN

) ~Q (A.17)

~QN � (
�Y
mY

) ~Q: (A.18)

In the new basis, the simpli�cation of total momentum conservation,

h~kf ~Qf ;Y3N4jV j~ki ~Qi;Y1N2i = (2�)3Æ( ~Qf � ~Qi)h~kf ;Y3N4jV j~ki;Y1N2i; (A.19)

serves to reduce the dimensionality of the G-matrix integral equation by half, leaving

h~kf ;Y3N4jG( ~Q; 
)j~ki;Y1N2i = h~kf ;Y3N4jV j~ki;Y1N2i
+
X
Y5

Z d3q0

(2�)3
h~kf ;Y3N4jV j~q0;Y5N6igIIY5N6

(~q0; ~Q; 
)

h~q0;Y5N6jG( ~Q; 
)j~ki;Y1N2i: (A.20)

The next step is to perform a partial-wave decomposition of the relative mo-

mentum states,

j~qi ! jq LMLi: (A.21)

The G-matrix de�ned by Eq. A.20 can now be expressed in terms of a sum over

matrix elements for each coupled partial-wave channel,

h~kf jG( ~Q; 
)j~kii = (2�)3
X

LMLL0M 0

L

hkfLMLjG( ~Q; 
)jkiL0M 0
LiYLML

(k̂f)Y
�
L0M 0

L
(k̂i):

(A.22)

Each term of Eq. A.22 has a simple angular dependence, ie. it is proportional to a

product of spherical harmonics. Substitution of the Eq. A.22 expansion into Eq. A.20

permits the angular integration over q̂0 to be performed explicitly using the orthogo-

nality of the spherical harmonics. This works provided there is no angular dependence

in gIIY N(~q
0; ~Q; 
): In general this provision will not be met, so the two-particle propa-

gator is angle-averaged.
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In order to examine the q̂0-dependence of the two-particle propagator, an

explicit form is �rst obtained by inserting the following expressions for the non-

interacting propagators,

g0Y (kY ;!) =
1

! � "Y (kY ) + i�
(A.23)

g0N(kN ;!) =
�(kN � kF )

! � "N(kN) + i�
; (A.24)

into Eq. A.8. Performing the integration over energy leaves the simple expression:

gIIY N(kY ; kN ; 
) =
�(kN � kF )


� "Y (kY )� "N(kN) + i�
: (A.25)

The straight-forward approach to angle-averaging leads to

�gIIY N(q
0; Q; 
) � 1

4�

Z
d
q̂0gIIY N(~q

0; ~Q; 
); (A.26)

for the angle-averaged two-particle propagator. This de�nition su�ers from two prob-

lems. First, the integral in Eq. A.26 can not in general be performed analytically.

More of a problem, however, is the fact that Eq. A.26 no longer shares the simple

analytic structure of the original two-particle propagator, Eq. A.25. The prescription

of Eq. A.26 \smears" the simple pole, which creates problems later in the calcula-

tion of the G-matrix. For this reason, angle-averaging is implemented in a di�erent

way. Instead of averaging the entire two-particle propagator at once, the numerator

and denominator of Eq. A.25 are angle-averaged separately. This leads to the new

de�nition

�gIIY N(q
0; Q; 
) �

��(q0; Q; kF )

� �"Y N(q0; Q; kF ) + i�

: (A.27)

which makes use of a shorthand notation for the two-particle energy,

"Y N(~q
0; ~Q) = "Y (~q

0; ~Q) + "N(~q
0; ~Q): (A.28)

An additional simpli�cation of

�"B(kB) � "B(�kB); (A.29)
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is made, where the sp momentum is angle-averaged instead of the energy. The sp

momenta kY and kN are functions of q0 and Q through Eq. A.16,

kB = kB(q
0; Q; kF ): (A.30)

The dependence on kF arises because the Pauli restriction on allowed angles is taken

into account even though the two parts of the two-particle propagator are angle-

averaged separately [61].

Each matrix element in the partial-wave basis may now be calculated via a

more tractable one-dimensional integral equation,

hkfLfMLf ;Y3N4jG( ~Q; 
)jkiLiMLi ;Y1N2i = hkfLfMLf ;Y3N4jV jkiLiMLi ;Y1N2i
+
X
Y 0

X
L0M 0

L

Z
dq0 q02hkfLfMLf ;Y3N4jV jq0L0M 0

L;Y5N6i�gIIY 0N(q
0; Q; 
)

hq0L0M 0
L;Y5N6jG( ~Q; 
)jkiLiMLi ;Y1N2i: (A.31)

Aside from the necessity of angle-averaging the two-particle propagator, the price

which must be paid for this simpli�cation is the in�nite number of partial-wave matrix

elements required for the sum in Eq. A.22. In practice, only a few terms in the the

partial-wave expansion make up the bulk of the contribution and the sum may be

truncated to good approximation.

A.1.1 Coupling to total angular momentum

The NSC89 interaction possesses a strong tensor force which can couple states of

di�erent orbital angular momentum, L. The tensor force is primarily the result of

pion exchange and is strongest for the �N��N channel. Pion exchange is nominally

forbidden for the �N��N channel because iso-spin cannot be conserved at the ���

vertex for a � with zero isospin. Charge-symmetry breaking voids this restriction to

some extent, but the tensor force in this channel remains relatively weak. The strong

interaction does not violate parity, so the total spin, S, of the Y N state is still a good

quantum number and L can only change by 0 or 2 units. Under these conditions,

it is natural to make another basis change; this time to eigenstates of total angular
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momentum, J = L+ S: In the new basis, the G-matrix is given by

hkfJ(LfST );Y3N4jG( ~Q; 
)jkiJ(LiST );Y1N2i
= hkfJ(LfST );Y3N4jV jkiJ(LiST );Y1N2i
+

X
Y5

X
L0

Z
dq0 q02hkfJ(LfST );Y3N4jV jqJ(L0ST );Y5N6i�gIIY 0N(q; Q; 
)

hqJ(L0ST );Y5N6jG( ~Q; 
)jkiJ(LiST );Y1N2i; (A.32)

where a label for the total iso-spin, T; has been included for completeness. The

operators which de�ne the potential matrix elements are all scalars in J and T . This

means that the matrix elements de�ned by Eq. A.32 are independent of MJ and MT .

The integral equation for the G-matrix is now in its �nal incarnation, even

though Eq. A.32 does not represent a closed form solution. A standard method for

solving such a one-dimensional integral equation is to discretize the integral and invert

the resulting matrix equation [50]. The discrete momentummesh must be chosen with

some care, taking into consideration the q0-dependence of both the potential matrix

elements and the angle-averaged two-particle propagator.

The potential matrix elements are quite smooth functions of the relative mo-

mentum in all important partial wave channels. The strong short-range part of the

Y N interaction couples low momentum states to intermediate states with very high

momentum. As a result, it is necessary to choose a q0-mesh which adequately covers

the high q0 region.

The q0-dependence of the two-particle propagator arises from two sources. The

Pauli �-function in the numerator serves mainly to cut o� q0 below a minimum,

q0min(Q); de�ned by

q0min(Q) �
8<
: kF �QN QN < kF

0 otherwise:
(A.33)

For 
 above a certain threshold, 
min(Q); there will be a pole in the angle-averaged

two-particle propagator (Eq. A.27). This pole occurs for a value, q00; of the relative

momentum de�ned by


 = �"Y N(q
0
0; Q; kF ): (A.34)
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The pole location, q00; as well as the cuto� value, q0min; are di�erent for the two YN

channels. This means that separate q0-meshes must be constructed for each channel.

A.1.2 � Self-energy

For either of the L = 0 partial-wave channels, the self-energy is given in terms of the

G-matrix and the nucleon-hole spectral function as

��(k�;!) =
X
J

(2J + 1)
Z
dQQ2

Z d�Q
2

Z
d!0 (A.35)

� hqJ(LS)T ; �N jG(Q;! + !0)jqJ(LS)T ; �NiSh
N(kN ;!

0): (A.36)

The relative momentum, q; and the nucleon momentum, kN ; are functions of the �

momentum, k�; and the integration variables,

q = q(k�; Q; �) = (Q�
2 + k�

2 � 2Q�k�)
1=2 (A.37)

kN = kN(k�; Q; �) = (Q2 + k�
2 � 2Qk�)

1=2: (A.38)

For the case of mean-�eld nucleons,

Sh
N(kN ;!

0) = Æ(!0 � "N(kN)); (A.39)

and the self-energy becomes

��(k�;!) =
X
J

(2J + 1)
Z
dQQ2

Z d�Q
2

� hqJ(LS)T ; �N jG(Q;! + "N(kN))jqJ(LS)T ; �Ni: (A.40)

The self-energy is solved for numerically by discretizing the integrals in Eq. A.40.
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Appendix B

Breakdown of the Quasi-particle

Approximation

In this appendix, a quantitative measure of the validity of the QPA is presented. The

self-energy is expanded about the qp-energy as in Eq. 2.59 but now terms up to order

(! � "qp)
2 are included for the imaginary part as well as the real part:

Re �(k;!) ' Re �(k; "qp(k)) +
@Re �(k; "qp(k))

@!
(! � "qp(k));

� R +R0(! � "qp); (B.1)

Im �(k;!) ' Im �(k; "qp(k)) +
@Im �(k; "qp(k))

@!
(! � "qp(k));

� I + I 0(! � "qp): (B.2)

In this \extended" QPA the spectral function takes the form

Sqpx(!) =
�1
�

z2[I + I 0(! � "qpx)]

(! � "qpx)2 + (zI)2
; (B.3)

where terms proportional to I 02 and R02 have been neglected. This function peaks at

a slightly di�erent energy,

"qpx � "qp � zII 0; (B.4)

than the usual qp-approximation, but it is the new energy dependent term in the

numerator which spoils the simple lorentzian shape and causes the qp-approximation

to eventually breakdown. This breakdown occurs when one moves far enough from
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the peak such that

jIj � jI 0(! � "qpx)j: (B.5)

This occurs at an energy, ! ' "qpx � Æ, where

Æ � jI=I 0j: (B.6)

It is reasonable to say that the simple QPA (I 0 = 0) is valid at the x-percent level if

a fraction, x, of the qp-strength is located within Æ of "qpx.

In the energy range about "qp where the QPA is valid, the spectral function

has a lorentzian shape. For this form of the spectral function, it can be shown that

a fraction, x, of the qp-strength is located within a range,

Æ � jzI tan(x�=2)j; (B.7)

of "qp. In other words, Z "qp+Æ

"qp�Æ
@!Sqp(k;!) = xz(k): (B.8)

Combining the conditions speci�ed in Eq. B.6 and Eq. B.7 yields

jI=I 0j = jzI tan(x�=2)j (B.9)

and �nally

x =
2

�
tan�1(1=zI 0) (B.10)

for the fraction of qp-strength accurately described within the QPA. Note that this

result is independent of the width, I, of the qp-peak.

The k-dependent parameters, z and I 0, determine x and hence the validity of

the QPA as a function of momentum. In the limit k ! 0, I 0 ! 0 and so x! 1. This

is just another con�rmation that the QPA becomes exact for k! kF . The breakdown

in the QPA as k increases is documented graphically in Fig. B.1.
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Figure B.1: Fraction of qp-strength accurately described within the QPA for the
lambda (circles) and nucleons [32] (diamonds).
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Appendix C

Isospin Structure of Spurions

In this appendix, details of the sigma spurion formalism are presented in Section C.1,

followed by a detailed manipulation of the reduced decay amplitudes for the lambda

and sigma hyperons in Sections C.2 and C.3 respectively.

C.1 Sigma Spurion

Similar to Eq. (4.37), the isospin structure of the sigma spurion states is

j~�i � j 1
2
� 1

2
i 
 [
m�

j1m�i];
= 
m�

[j 1
2
m�� 1

2
ih 1

2
m�� 1

2
j 1
2
� 1

2
; 1m�i

+ j 3
2
m�� 1

2
ih 3

2
m�� 1

2
j 1
2
� 1

2
; 1m�i]: (C.1)

The factor,


m =

8<
: �1 m = 1

1 otherwise;
(C.2)

is included with the sigma states to ensure that �+ and �� are antiparticles. Evalu-

ating the Clebsch-Gordon coeÆcients explicitly, this works out to

j~�+i =

s
2

3
j 1
2

1

2
i � 1p

3
j 3
2

1

2
i; (C.3)

j~�0i = � 1p
3
j 1
2
� 1

2
i+

s
2

3
j 3
2
� 1

2
i; (C.4)

j~��i = j 3
2
� 3

2
i (C.5)
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for the various charge states.

C.2 Reduced Amplitudes: Lambda

Amplitudes for the two lambda decay channels may be expressed in terms of a \re-

duced" amplitude,

a(�! N�) � h~�j~� � ~�jN�i~a(�! N�); (C.6)

which excludes the isospin dependence. In order to easily evaluate the isospin depen-

dent factor in Eq. 4.41, it is convenient to write the scalar product,

~� � ~� = ��1��1 � ��1�1 + �0�0; (C.7)

in terms of pion creation/annihilation operators,

��1 = �� �1 = ��+ �0 = �0; (C.8)

��j�+i = j0i �+j��i = j0i �0j�0i = j0i; (C.9)

and isospin raising/lowering operators,

�1 = �
p
2�+ �+jni = jpi �+jpi = j0i (C.10)

��1 =
p
2�� ��jni = j0i ��jpi = jni (C.11)

�0 = �0 �0jni = �jni �0jpi = j0i; (C.12)

which results in the expression,

~� � ~� =
p
2(�+�� + ���+) + �0�0: (C.13)

The lambda decay amplitudes in terms of the reduced amplitude are

a(�! p��) = h~�j~� � ~�jp��i~a(�! N�)

= h~�j
p
2���+jp��i~a(�! N�)

=
p
2hnj��jpi~a(�! N�)

=
p
2~a(�! N�); (C.14)
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a(�! n�0) = h~�j~� � ~�jn�0i~a(�! N�)

= h~�j�0�0jn�0i~a(�! N�)

= hnj�0jni~a(�! N�)

= �~a(�! N�): (C.15)

C.3 Reduced Amplitudes: Sigma

The contribution to the sigma decay amplitudes which correspond to decay from the

T = 1=2 portion of the spurion state are related to a T = 1=2 reduced amplitude

in the same way as Eqs. 4.42 and 4.43 for the lambda. The isospin factor for the

T = 3=2 component of the amplitude may be found by writing the scalar product,
~T � ~�, in terms of pion creation/annihilation operators,

~T � ~� = �T1��1 � T�1�1 + T0�0; (C.16)

as was done in Eq. C.13. Now, using the Wigner-Eckart theorem, the isospin factor

appearing in the second term of Eq. 4.44 may be found by evaluating matrix elements

of the form

h 3
2
m~�jTkj 12 mN i = h 1

2
mN ; 1mkj 32 m~�i

2
4 h 12 jjT jj 32iq

2( 1
2
) + 1

3
5 : (C.17)

The expression in square brackets is a constant for all � ! N� decays, so any

variation due to isospin is accounted for by the Clebsch-Gordon coeÆcient. Because

the term in square brackets is channel independent, it is arbitrary in a sense, and

may be conveniently subsumed in the reduced amplitude. This is not necessary of

course, but produces the nice result of Eq. 4.50 for the purely T = 3=2 decay. As

an example, the amplitude for the decay �+ ! p�0 may be written in terms of the

reduced amplitudes as follows:

a(�+ ! p�0) = h~�+j~� � ~�jp�0i~a(1=2)(�! N�) + h~�+j~T � ~�jp�0i~a(3=2)(�! N�)

= h~�+j�0�0jp�0i~a(1=2)(�! N�)

+ h~�+jT0�0jp�0i~a(3=2)(�! N�)

=

s
2

3
hpj�0jpi~a(1=2)(�! N�)
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� 1p
3
h�+jT0jpi~a(3=2)(�! N�)

=

s
2

3
~a(1=2)(�! N�)

�
p
2

3
~a(3=2)(�! N�): (C.18)

The other decay channels may be similarly determined,

a(�+ ! n�+) =
2p
3
~a(1=2)(�! N�)

+
1

3
~a(3=2)(�! N�); (C.19)

a(�0 ! p��) = �
s
2

3
~a(1=2)(�! N�)

+

p
2

3
~a(3=2)(�! N�); (C.20)

a(�0 ! n�0) =
1p
3
~a(1=2)(�! N�)

+
2

3
~a(3=2)(�! N�); (C.21)

a(�� ! n��) = ~a(3=2)(�! N�): (C.22)
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Appendix D

Wound Integral

Wound Integrals

The volume integral of the defect wavefunction is a measure of the combined strength

and range of the strong interaction and de�nes a \correlation volume",

VC �
X
i

Z
d3rjh~rj�iij2: (D.1)

The wound integral, �, is de�ned as the ratio of VC to the volume per particle,

V0 � 1

�
=

3�2

2kF
3 : (D.2)

The concept of the wound integral was introduced by Brandow [62] in the context

of the Brueckner-Bethe-Goldstone theory of NM as an expansion parameter for a

cluster expansion. It is tempting to argue that correlations are not important if

�� 1, because particles will not, on average, be within interaction range. The wound

integral does provide a means of comparing the relative strength of correlations among

di�erent potentials. A \partial" �ij for each channel can be de�ned by

� =
X
ij

�ij (D.3)

All of the \partial" wound integrals for an initial �N S-state are presented in

table D.1 along with values for the RSC interaction [63] for comparison. Table D.1

shows that wound integrals for the NSC89 potential are of comparable size to their
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Channel �JSY 0L0;Y L

Initial Intermediate NSC89 RSC
�N 1S0 �N 1S0 0.007 0.022
�N 1S0 �N 1S0 0.002 |{
�N 3S1 �N 3S1 0.028 0.031
�N 3S1 �N 3S1 0.034 |{
�N 3S1 �N 3D1 0.028 0.068
�N 3S1 �N 3D1 0.094 |{

Table D.1: Wound integrals.

nuclear counterparts. These results clarify the importance of the coupling to �N

states by the strong interaction in the weak decay of the lambda as considered in

Chapter 5.
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