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Chapter 1

Introduction

1.1 Motivation

The microscopic derivation of properties of nuclei remains a compelling goal of quan-

tum many-body theory. Which many-body method to use and which interaction to

use therein are questions that are still actively pursued. For the purpose of deciding

these basic features of the microscopic calculation, a proving ground which separates

the chosen method or interaction from each other is necessary. In this regard, the

opportunity to isolate the nuclear force from the many-body calculation scheme is

provided by considering in�nite nuclear matter [1].

Some properties of heavy nuclei saturate to A-independent quantities. For in-

stance, in this large-A limit, neglecting Coulomb forces and assuming equal numbers

of protons and neutrons, the only remaining term in the semiempirical mass formula

[2],[3] requires a binding energy of about 16 MeV per nucleon. Also, the central den-

sity in large nuclei saturates at a value of about 0:17 fm�3 [3]. A more modern value

obtained from electron scattering experiments on 208Pb is 0:16 fm�3 [4]. For large-A

systems, these saturation properties prove to be good tests for many-body methods

and theoretical models of the nuclear interaction. The hypothetical system of in�nite

nuclear matter is then de�ned by taking A)1, neglecting Coulomb forces, and set-

ting the number of protons equal to that of neutrons. This choice suggests that the

appropriate single-particle (sp) states are plane waves due to translational invariance,

whereas for �nite nuclei, the choice of sp basis must be addressed separately for each

nucleus.

Clearly, solving for a many-body wavefunction of a system containing an in�nite
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number of particles is impossible. It is useful to recall that all information in a sp

wavefunction is contained in a propagator, and all sp information about a system

of particles can be contained in the behavior of an �average� single particle [5], or,

technically, the single-particle Green's function or propagator. To determine this crit-

ical function, approaches are generally based on the notion that atomic nuclei and

nuclear matter can be modeled as a non-relativistic system of fermions which interact

via two-body forces determined by nuclear scattering experiments. Several methods

exist for solving this system and deriving characteristics of nuclear matter and �nite

nuclei including variational (correlated-basis functions) solutions [6], Brueckner the-

ory's hole-line expansion [7]-[10], and exp S methods [11]. None have had success

at this level of approximation in predicting both the binding energy and density si-

multaneously, and the results of the variational and Brueckner two-hole-line methods

were seen to produce di�ering results, with variational calculations predicting more

binding at saturation than the Brueckner scheme in lowest order (Brueckner-Hartree-

Fock). This discrepancy called attention to two distinct issues to be addressed by

nuclear many-body theory [12].

Firstly, at issue is which is the best method for calculation of saturation properties

with this model of the nucleus. The Brueckner-Bethe-Goldstone (BBG) method is

an expansion in the number of hole-lines. In lowest order, including two hole-line

terms, the results lay on a band in the binding energy vs. density plane known as

the Coester band [13]. For a chosen nucleon-nucleon (NN) potential, a calculated

saturation density that agrees with the empirical value will have a binding energy

(BE) which is too low, and when the correct BE is predicted, the calculated saturation

density is too high. The BBG method could be extended to next order in the hole-

line expansion to three-hole-line terms. This inclusion o�ered improvement over the

two-hole-line calculation shifting saturation energy per particle from -10 MeV to near

-16 MeV and saturation density to a range of Fermi momenta from 1.45 fm�1 to over

1.50 fm�1 for the Reid soft-core interaction [14]. While this did not bring saturation

properties to agree with the empirical values, it did move results o� the Coester
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band and agreed with advanced variational calculations [15]. The fact that results

calculated with two di�erent methods agreed did appear to resolve the con�ict of

method within the �eld to a degree. However, both methods produced results which

could not describe nuclear saturation properties.

Secondly, at issue is which are the most important physical aspects of the system

that must be included in any accurate calculation of its saturation properties. In

an attempt to understand saturation values, the possibility that three-body interac-

tions may play an important role was explored using a phenomenological three-body

force in nuclear matter to yield a theoretical description of the known nuclear satu-

ration [16]. Meanwhile, Dirac-Brueckner theory was developed to extend the model

to include possible relativistic e�ects [17],[18], and this also yielded a satisfactory

agreement with empirical saturation properties. These saturation values for various

potentials lay on a new band in the BE vs. density plane which included the em-

pirical value, and the extension of the calculation beyond two-body correlations need

not be considered. This perplexing and contradictory state of a�airs continues to fuel

many-body theory's pursuit of an understanding of nuclear saturation. In the case of

the spin-orbit splitting in 16O, it is possible to argue that relativity and three-body

forces may be di�erent ways of describing the same physics [19].

The results of BHF calculations depend on the choice of the sp potential, U(k).

In the �standard� choice, U = 0 for k > kF , and U is the self-consistent Brueckner-

Hartree-Fock potential for k < kF . The alternative �continuous� choice has been

proposed in Ref. [20] for which U is again the self-consistent BHF potential, but it

extends to k > kF . BBG calculations are in principle independent of the choice of U .

Including the three hole-line contribution, using both choices of U as a starting point,

Ref. [21] has recently demonstrated this independence. This is due to the fact that

the three hole-line contribution for the continuous potential is much smaller than that

with the standard choice which implies that a BHF calculation with the continuous

U may already include higher-order correlations [22].

The present approximation to the propagator in in�nite nuclear matter yields a

3



set of Feynman diagrams well suited to considering short-range correlations (SRC)

which are studied in this thesis. However, a realistic NN interaction contains not

only short-range repulsion, but also longer range forces which are more attractive.

Calculations which include the diagrams for long-range correlations (LRC) suggest

that the �-isobar excitations can not be neglected in calculating the contribution

of these diagrams to binding [23]. The resulting contribution to the binding energy

(calculated in the independent-particle model) is unreasonably high. These consid-

erations also lead to the prediction of pion condensation which is not observed in

nuclei. The relevance of these terms in describing �nite nuclei is questionable, due to

the q-dependence of the potential and the fact that nucleon wavefunctions in �nite

nuclei will sample both repulsive and attractive regions, whereas, in nuclear matter,

the attractive part can be ampli�ed at q � kF due to momentum conservation. For

the purpose of describing nuclear matter as an approximation to the interior of heavy

nuclei, the study of LRC will not be attempted in the present work.

It is in this context that one may consider the issue which is the object of this work:

To what extent can nuclear saturation be understood taking the nuclear medium as a

nonrelativistic, low-density system of particles interacting via a realistic two-body NN

interaction? The calculations of the type discussed above employ an independent-

particle model (IPM) which assumes that sp states of a given momentum have a

sp energy determined by a momentum-dependent mean �eld due to the presence

of the nuclear medium. Before considering three-body forces or relativity, one may

observe that these calculations have thus far not been performed including SRC self-

consistently. For example, Brueckner methods have been used to calculate the e�ect

of interactions using as a starting point a system of noninteracting, independent

particles in a mean �eld such that all states with k < kF are fully occupied and

all those with k > kF are empty. Meanwhile, experiment has shown that the 3s1=2

orbital of 208Pb is only 75% occupied [24], a feature which can not be explained

using an IPM. A realistic nuclear interaction contains strong short-range repulsion,

which necessarily implies that interacting nucleons can admix high-momentum states
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according to the Heisenberg uncertainty principle. In order for a calculation to include

e�ects of SRC, it must allow particles to exist o� the mass shell [25], and must go

beyond the mean-�eld IPM. To what extent one can understand nuclear saturation

utilizing the chosen basic physical model of the nuclear medium, while investing added

complexity to the computational method to include SRC beyond the IPM, has not

been fully determined. The di�culty in pursuing this method is the computational

expense and di�culty of its implementation with iterative methods.

In this thesis, the nuclear medium is considered as a nonrelativistic, low-density

Fermi gas of nucleons at zero-temperature in which interactions are very repulsive

at short-range. In this limit, the Brueckner G-matrix approximation has been used

to describe the e�ective interaction in the IPM with only forward going propagators

included in the calculation of the e�ective interaction. This is not the approxima-

tion we will use, however, since the corresponding input spectral functions in this

approximation are Æ-functions on mass-shell and the outputs are continuous spectral

functions in energy, fragmenting the strength of a particle with a �xed momentum

over all energies and depleting its occupation. Thus, the resulting sp states are par-

tially occupied. A particle can be added in sp states that had been considered fully

occupied and inaccessible due to Pauli blocking in the IPM (k < kF ), and a particle

can be removed from an sp state that had been considered empty (k > kF ). Thus,

the need arises to treat hh and pp propagation in the e�ective interaction on equal

footing [26],[27], as is done with the Galitskii-Feynman e�ective interaction. Coupling

this with the Dyson equation creates a nonlinear iteration scheme which will serve

as the basis of self-consistent Green's function (SCGF) studied in nuclear matter. In

the present work, computational tools have been generated to perform this calcula-

tion, allowing one to assess to what degree such a treatment explains the discrepancy

between theoretical and experimental saturation properties

The solution of the considered scheme contains an inherent nonlinearity. This is

because the motion of a particle in the interacting medium must be a function of the

5



motion of all the other particles with which it interacts. As a result, the medium-

modi�ed sp propagator is dependent on itself. To solve this problem, the in-medium

sp propagator must be expressed as a function of the interaction and the in-medium

sp propagator which allows an iterative solution. This nonlinearity is conveniently

contained in the SCGF method as the e�ective potential determines the propagator in

medium and the sp propagator is required to calculate the e�ective interaction. Since

a full solution of this problem can only be found by iteration of these quantities, the

question addressed by solving for the SCGF is: To what degree does the full solution

di�ers from previous work starting with the IPM approximation?

Treating the nonlinearity on the Hartree-Fock level results in a self-consistent

mean �eld (MF) due to the average e�ect of the presence of the medium. This yields

the shell model (SM) which has had many successes. But this picture cannot contain

the observed e�ects of the more complicated structure of the nuclear force. The

structure of sp states in nuclei have been elucidated by (e,e0p) knockout experiments

[28],[29]. Investigated states exhibit greater width of the spectral peak for states

farther from the Fermi energy, such that the sp states are not localized in energy

and therefore do not have in�nite lifetimes as in the IPM. These observed peaks are

also depleted such that they contain signi�cantly less than all the sp strength. A

description of sp states which goes beyond the MF to contain e�ects of the strong

interaction is the Landau-Fermi-liquid description for an in�nite system [30]-[33].

Single-particle states in the Fermi-liquid picture will have a �nite width around an

on-shell quasiparticle energy, and the width increases for states farther from the Fermi

surface, as observed in experimental spectra. Another characteristic of sp states

inferred from theoretical calculations include a strongly fragmented background which

appears far from a quasiparticle peak [26],[34]-[36].

The di�culty in calculating the e�ect of SRC is that one cannot start from an

approximation like the SM and apply the interaction as a perturbation, since the

contribution of the short-range interaction diverges at every order. Only an in�nite

sum can be used as was formulated by Brueckner. Brueckner's G-matrix generates an

6



imaginary self-energy at energies greater than the Fermi energy but does not generate

fragmentation of the sp strength below the Fermi energy. It is therefore necessary to

include hole-hole propagation as in the Galitskii-Feynman interaction which leads to

a complex self-energy both above and below the Fermi energy. This feature allows

for fragmentation of the sp strength both above and below the Fermi energy. A

self-consistent determination of the propagator guarantees conservation of particle

number [37].

The present work builds on the work of previous e�orts [38]-[43], striving to achieve

a self-consistent solution. Due to the fact that the key ingredients in a Brueckner-

type in�nite sum are the propagators and the interaction, the SCGF framework is

well suited to the task as it has the key quantity of the sp Green's function, or prop-

agator. The treatment of hole-hole propagation in nuclear matter, which allows the

calculation of spectral functions with a semi-realistic interaction, was developed by

Ramos [26],[38]. This work was extended to include the full Reid potential including

the treatment of pairing instabilities by Vonderfecht [39],[40]. Gearhart followed by

considering the parametrization of the spectral function and calculated the scattering

of dressed particles in nuclear matter [41],[42],[43]. In the present work, the spectral

functions generated by Vonderfecht are used as an ansatz for the single-particle prop-

agator. A functional form of the self-energy has been used, from which the spectral

function can be simply obtained. The choice to parametrize the imaginary part of

the self-energy is numerically easier to handle than Gearhart's parametrization of the

sp spectral function. This method of obtaining the spectral function has the built-in

feature of ful�lling the sp strength sum rule and energy weighted sum exactly[44].

In this way, the full propagator is used at every step of the calculation, and

the iteration is converged when the output of including the e�ect of the interacting

medium in the sp propagator, with the e�ective interaction, results in little change

according to criteria discussed in Chapter 3. The goal of the SCGF solution is to

determine numerically reliable spectral functions which can be used to evaluate the

expectation value of any one-body operator and can be used for comparison with

7



(e,e0p) knockout experiments. While it will not be explored in detail in this thesis,

the interacting two-particle propagator is also calculated in this scheme, from which

all 2p expectation values can be obtained and which can be used in comparison with

(e,e02p) experiments [45]. The foremost goal of this work is to study the saturation

properties of nuclear matter and to explore the properties of the sp SCGF to gain

further insight.

The change in treatment of SRC with SCGF provides a mechanism for the sp

properties to move away from their IPM values by propagating particles with respect

to the correlated ground state [46]. This is the case since the primary e�ect of self-

consistency is the loss of a lower limit in energy for the spectral function. Since the

binding energy is found from the sp spectral function by integrating over all phase

space the hole spectral function weighted with (! + k2

2m
), one may wonder whether

this might be expected to increase binding signi�cantly. Still, at high momenta (k >

7 fm�1), the hole spectral function consists of a well-de�ned 2h1p peak at ! �= � k2

2m
.

These high momenta therefore do not contribute to the binding energy resulting in

�nite and physically reasonable results.

The density dependence of SCGF solutions must be explored in order to de�ne the

saturation density predicted by such considerations. Because each density requires

iteration to convergence, only two densities are considered, the empirical density

(�0), corresponding to kF = 1:36 fm�1, and a slightly higher density corresponding

to kF = 1:45 fm�1.

As an additional application of the method developed, �nite temperature nuclear

matter is studied at T = 5 MeV. The same ansatz is used as in the zero temperature

case. Some modi�cation of the SCGF framework is required to describe the �nite-

temperature statistical ensemble of states which uses Matsubara Green's functions

[47],[48], but a satisfactory result for � = �0 is achieved. This method can be applied to

determine thermodynamic properties of nuclear matter when short-range correlations

dominate.

In this work, the Reid potential [49] is used since it contains a very strong repulsive
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core. This implies that the more recent, softer potentials will also be amenable to a

SCGF solution once one has solved the technical issues encountered in implementing

the SCGF solution for the Reid potential.

1.2 Outline

In Chapter 2, the formal framework of the solution for SCGFs including SRC via the

Galitskii-Feynman e�ective interaction is introduced. The propagator is introduced,

and its expansion as an in�nite set of Feynman diagrams is developed. The form of

the e�ective interaction for the low-density limit is the gamma matrix which contains

the e�ect of SRC in a sum of all ladder diagrams. This e�ective interaction will

include dressed interacting nucleons and both the particle-particle (pp) and the hole-

hole (hh) terms in the ladder equation. Then the self-energy is constructed from

the gamma matrix and sp propagator, both of which contain medium modi�cations.

Finally, the Dyson equation is used to yield propagators in terms of the self-energy,

or e�ective potential, with the nonlinearity of the solution again evident.

In Chapter 3, the computational tools used in our calculations are presented. A

functional form for the imaginary part of the self-energy is presented and employed.

The real part of the self-energy is determined using a dispersion relation, and the

Hartree-Fock term is obtained directly from the potential and the momentum distri-

bution. Next the gamma matrix is found by a matrix inversion, and the imaginary

part of the self-energy is found from a convolution of the e�ective interaction and the

sp spectral function. The imaginary part of the new self-energy is represented in a

functional form whose parameters can be monitored for convergence. The process of

iteration to convergence is displayed in Chapter 4, and the key quantities are outlined

in their �nal forms.

In Chapter 5, the SCGF formalism is redeveloped using Matsubara Green's func-

tions for the �nite temperature case with results presented in Chapter 6. Finally,

some conclusions and future directions are discussed in Chapter 7.
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Chapter 2

Zero-Temperature Formalism

The self-consistent treatment of a system of identical interacting fermions is intro-

duced in this chapter. The present formulation is geared toward the study of in�nite

nuclear matter. A more general and complete introduction to second quantization

and many-body methods can be found in Refs. [50]-[54]. Sections 2.1 and 2.2 pro-

vide an introduction to the sp propagator and its particular e�cacy for describing a

many-body system. In Section 2.3, the sp propagator is related to the self-energy,

which contains the e�ect of interparticle interactions, through the Dyson equation.

As the approximation of the self-energy in nuclear matter, which includes the in�u-

ence of SRC, the ladder approximation is introduced in Section 2.4. The resulting

set of equations yield a cyclic set of relations requiring a nonlinear solution scheme,

as discussed in Section 2.5.

2.1 Background

The meaning of the sp propagator in many-body applications is similar to that in

one-particle wave mechanics. In the latter case, for a time-independent Hamiltonian,

the time evolution of the wave function is determined as follows (setting �h = 1)

hrj�; t0; ti = hrjU(t� t0) j�; t0i
= hrj e�iH(t�t0) j�; t0i
=

Z
d3r0 hrj e�iH(t�t0) jr0i hr0j�; t0i t > t0: (2.1)
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where the initial state at t0 is represented by j�; t0i, and U(t � t0) represents the

time-evolution operator. This result can be rewritten as:

 (r; t) = i
Z

d3r0 g(r; r0; t� t0) (r
0; t0) (2.2)

showing that the time-evolved state is completely determined by the initial state and

the Green's function, g. The propagator can be expressed as:

g(r; r0; t� t0) = �i hrj e�iH(t�t0) jr0i
= �iX

n

hr jni hn jr0i e�iEn(t�t0): (2.3)

The propagator can be interpreted as the wavefunction at (r; t) of a time evolved

state which had been localized at r0 at some initial time t0. To express this important

object, one must recall that the wave function above obeys the Schr�odinger wave

equation,

�i hrjHj	(t)i =
@

@t
hrj	(t)i

=
@

@t
hrjU(t� t0)j	(t0)i

= i
Z

d3r0
@

@t
g(r; r0; t� t0) hr0j	(t0)i (2.4)

This di�erential equation for the time evolution operator is the starting point of its

perturbation series, or Born expansion. Likewise, the di�erential equation for the sp

propagator in the many-body problem serves as the source of the Dyson series.

In this chapter the general de�nition and relations of Green's function theory

will be sketched and tailored to in�nite nuclear matter. In in�nite nuclear matter,

translational and rotational invariance dictate the choice of sp basis states to be used.

For an in�nite medium, the discrete momentum spectrum merges to a continuum with

excitation energies becoming continuous, allowing integral and analytic tools to be

applied. The many-body methods introduced here are applied to the in�nite nuclear

matter system by taking advantage of these properties where possible.
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2.2 The Single-Particle Propagator in a Many-Body System

For many-particle systems, the propagator will necessarily be a more complicated

object than it is for the one-body system, but the same physical interpretations

apply. The propagator relates many-body states, and its de�nition requires the tools

of second quantization. The many-body environment requires consideration not only

of states where a particle is added to the initial many-body state but also of states

where a particle is removed. The propagator therefore contains two terms.

g(k;k0; t� t0) = �i
D
	N
0

��� ak(t)ayk0(t0)
���	N

0

E
�(t� t0)

+ i
D
	N
0

��� ay
k

0(t0)ak(t)
���	N

0

E
�(t0 � t) (2.5)

For notational simplicity in this expression, k represents momentum as well as spin

and isospin quantum numbers. The �rst term describes the transition amplitude in

the (N + 1)-particle system, from a state which can be described as the N -particle

ground state with a particle added in the k0 state, into a �nal state which can be

described as the N -particle ground state with an additional particle in the state k

some time (t�t0) later. This term can clearly be interpreted as a particle propagating

on top of the N -particle ground state and describes the corresponding sp transitions

in the many-particle setting. A particle can also �rst be removed from the system

leaving a �bubble� to propagate in the many-body system, and these hole transition

amplitudes must also be contained in the sp propagator.

Fourier transforming Eq. (2.5) yields:

g(k;k0;!) =
D
	N
0

��� ak 1

! � (Ĥ � EN
0 ) + i�

ay
k

0

���	N
0

E
+

D
	N
0

��� ay
k

0

1

! � (EN
0 � Ĥ)� i�

ak

���	N
0

E
(2.6)

=
X
n

D
	N
0

��� ak ���	N+1
n

E D
	N+1
n

��� ay
k

0

���	N
0

E
! � (EN+1

n � EN
0 ) + i�

+
X
m

D
	N
0

��� ay
k

0

���	N�1
m

E D
	N�1
m

��� ak ���	N
0

E
! � (EN

0 � EN�1
m )� i�

; (2.7)
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where Ĥ is the Hamiltonian and EN
0 is its eigenvalue in the ground state. A complete

set of states for the (N +1) and (N�1) system has been inserted in the last equality,

yielding the Lehmann representation [55] of the sp propagator, g. This representation

is especially useful since its poles represent sp excitation energies with respect to

the ground state. The numerator contains the probability amplitudes to reach these

states. The energy required to add a particle to the ground state,
���	N

0

E
, while reaching

the ground state of the (N + 1) system,
���	N+1

0

E
, de�nes the Fermi energy, "F =

EN+1
0 � EN

0 . No particles can be added to the system at an energy less than the

Fermi energy. Likewise, a hole state can be created only with energies less than "F .

In the in�nite nuclear matter system, Eq. (2.7) can be further simpli�ed. Because

the ground state of this system has zero total momentum, the addition of a particle

with some k to the ground state also requires the removal of a particle with the

same momentum, k. Therefore, in this special case, k = k0. Dependence on the

direction of k is not possible due to rotational invariance and re�ection symmetry.

The propagator can �nally be written as,

g(k; !) =
Z 1

�F
d!0

Sp(k; !
0)

! � !0 + i�
+
Z �F

�1
d!0

Sh(k; !
0)

! � !0 � i�
; (2.8)

where

Sp(k; !) =
D
	N
0

��� ak ���	N+1
n

E D
	N+1
n

��� ay
k

���	N
0

Edn
d!

(2.9)

Sh(k; !) =
D
	N
0

��� ay
k

���	N�1
m

E D
	N�1
m

��� ak ���	N
0

Edm
d!

(2.10)

are the sp spectral functions which represent the probability of a particle's addition

(or removal) at some (k; !). In this expression, dn
d!

and dm
d!

represent the relevant

density of states as a function of energy. The denominator in Eq. (2.8) contains the

energy of the state reached by adding or removing such a particle. It is important

to note that this form of the Green's function is not analytic in either the upper

or lower half of the !-plane. The Green's function contains two contributions, g<

and g>, which are analytic on their respective halves of the !-plane. Therefore, any

required contour integration will be performed on each term separately. The Green's
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function has a branch cut along the real axis due to the in�nite medium, in which

case discrete poles form a continuous line, above the real axis (represented by >)

for holes and below it (<) for particle excitations. In the limiting case of ! ! real,

the propagator can be separated into its real and imaginary parts using the integral

relation:
1

x� i�
= P

1

x
� i�Æ(x) (2.11)

where P represents a Cauchy principal value integral. Using Eq. (2.11) in the above

form of the Green's function yields

Im g(k; !) = ��Sp(k; !) ! > �F

= +�Sh(k; !) ! < �F (2.12)

Re g(k; !) = P
1

�

Z �F

�1
d!0

Sh(k; !
0)

! � !0
� P

1

�

Z 1

�F
d!0

Sp(k; !
0)

! � !0
: (2.13)

All the information of the sp propagator in in�nite nuclear matter is therefore con-

tained in the spectral functions. Knowing how the sp strength with momentum k is

distributed in energy therefore yields all relevant information for the sp propagator.

The propagator contains crucial information about the sp excitation spectrum in the

medium, and we will see that many features of the medium can be determined from

this object when evaluating expectation values of relevant operators. Solving for the

sp propagator in a many-body system yields sp wave functions in the medium, and

any sp information of interest must therefore follow from it.

The expectation value of the kinetic energy can be obtained as follows

hT̂ i = 4V

(2�)3

Z
d3k

Z "F

�1
d!

k2

2m
Sh(k; !) (2.14)

where the k index represents momentum, and the factor of four arises from the spin

and isospin degeneracy. Since the kinetic energy operator is of one-body type, hT̂ i is
a calculable quantity from the sp propagator. However, if particles interact through a

two-body interaction, it would seem that hV̂ i cannot be found from the sp propagator.

Instead, its direct calculation would require the ground state expectation value of
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four �eld operators, which is governed by the two-particle propagator, which will be

introduced in the next section. However, the sp propagator is determined through a

solution of the Schr�odinger equation which includes the potential energy, and, as a

result, the potential energy can be obtained from the sp propagator. One can show

that [52] I d!

2�i
!g(k; !) =

D
	N
0

��� ayk [ak; Ĥ]
���	N

0

E
: (2.15)

Evaluating the sum of this expression over all sp states for the case of a Hamiltonian

which is restricted to two-body interactions, one �nds:X
k

I d!

2�i
!g(k; !) = hT̂ i+ 2hV̂ i (2.16)

giving forms of the following expectation values which are dependent only on the

single-particle propagator [56],[57]:

hT̂ i =
4V

(2�)3

Z
d3k

Z "F

�1
d!Sh(k; !)

k2

2m
(2.17)

hV̂ i =
1

2

4V

(2�)3

Z
d3k

Z "F

�1
d!Sh(k; !)(! � k2

2m
) (2.18)

hĤi =
1

2

4V

(2�)3

Z
d3k

Z "F

�1
d!Sh(k; !)(! +

k2

2m
) (2.19)

The two-particle (2p) propagator allows calculation of expectation values of all two-

particle operators for the many-body system. Clearly, for the sake of comparison with

experimentally accessible characteristics of nuclei, including saturation properties and

1N and 2N removal cross sections, the sp and 2p propagators can be considered

to contain most information of interest about the system. Therefore, �nding the

interacting propagators can also be viewed as one of the goals of this microscopic

study.

2.3 Dyson Equation

The sp propagator in an interacting medium will be modi�ed with respect to that in

free space and take on a much more complicated structure. This modi�ed sp prop-

agator must also describe the particles in the medium with which the single particle
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interacts. This results in a nonlinearity which is conveniently treated with SCGF

theory. In this section, perturbation theory is applied to the sp propagator to derive

its relation to the non-interacting sp propagator and the interparticle interaction.

First, the assumption of only two-body forces yields a Hamiltonian of the following

form:

Ĥ = Ĥ0 + Ĥ1 (2.20)

=
X
��

h�jH0 j�i ay�a� +
1

4

X
��Æ

h��jH1 jÆi ay�ay�aÆa; (2.21)

using a general sp basis j�i, where � describes a complete set of quantum numbers. In

the case of nuclear matter, Ĥ1 represents the Hamiltonian's dependence on two-body

operators due to nucleon-nucleon (NN) interactions. The necessary expansion of the

sp propagator comes straight from application of t-dependent perturbation theory

[52]. Using the di�erential equation for the time-evolution operator in the interaction

picture,

i
@

@t
U(t; t0) = Ĥ1U(t; t0) (2.22)

and integrating and iterating, one obtains,

U(t; t0) = 1� i
Z t

t0
dt0Ĥ1(t

0)U(t0; t0)

= 1� i
Z t

t0
dt1Ĥ1(t1) + i2

Z t

t0
dt1

Z t1

t0
dt2Ĥ1(t1)Ĥ1(t2) + � � �

=
1X
n=0

(�i)n
n!

Z t

t0
dt1 � � �

Z t

t0
dtnT [Ĥ1(t1) � � � Ĥ1(tn)] (2.23)

Noting that Ĥ1(t1) and Ĥ1(t2) may not commute, a general expression for the nth

term in this expansion was formulated by Dyson [58] using the time-ordering operator,

T: T arranges the operators in brackets such that time arguments decrease from left

to right and includes a term of (�1) for each required interchange of two fermion

�eld operators in the ordering. Using this result, one obtains for the propagator in a

general sp basis,

g(�; �; t� t0) = �i
1X
n=0

Z 1

�1
dt1

Z 1

�1
dt2 � � �

Z 1

�1
dtn
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element from Wick's theorem factor in Green's function diagrammatic element

pair of contracted �eld operators ig0(�; �;!) line with arrow

interaction matrix element �ih��jV jÆi dashed horizontal line

Table 2.1: Guide to translating Feynman diagrams into mathematical expressions
which can be evaluated by integrating over all internal variables.

h�0jT [Ĥ1(t1) � � � Ĥ1(tn)a�I (t)a
y
�I
(t0)] j�0i ; (2.24)

where only the connected contributions need be considered [52]. The �eld operators

are used in the interaction picture as is indicated by the subscript I. Wick's theorem

simpli�es the expansion and allows each term in the sum to be depicted by a Feynman

diagram. It also states that the expectation value of any second quantized operator,

like the sp propagator, is represented by the sum over all possible fully contracted

products of �eld operators involved. Performing this sum corresponds to summing

all Feynman diagrams which begin and end with free particle noninteracting propa-

gators, whose time dependence is governed by H0. Each diagram contains a distinct

arrangement of n interactions for each order n and contains terms represented in

Table 2.1. The contribution of each term represents a probability amplitude as cal-

culated from Eq. (2.24), but now we can associate a picture with each term and use

a dictionary to translate from diagrammatical to mathematical expressions, which

must be evaluated by integrating over all internal variables. One can also see that all

possible diagrams one can assemble with the given elements from a particular term

in Eq. (2.24) will correspond to all possible contractions at each order.

Useful expressions can be attained if, instead of the previous sum, one considers

the sum of those terms with the external propagators clipped o�. The sum de�nes

the reducible self-energy, �R. The sum of only those terms which cannot be separated

into two unconnected diagrams by clipping a single propagator yields the proper self-

energy, �. In this way, the reducible self-energy consists of all orders of the irreducible

self-energy connected by noninteracting propagators. This is illustrated in Fig. 2.1.
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Figure 2.1: Several equivalent forms of Dyson's equation. The last equality allows
the solution of the interacting sp propagator from the noninteracting propagator and
the e�ective potential, represented by the irreducible self-energy, �.
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The last equality in Fig. 2.1 represents Dyson's equation which relates the nonin-

teracting sp propagator and the interacting propagator, represented by double-lines,

via the self-energy, �. Any approximation for the proper self-energy generates an ap-

proximate series of in�nite order for the Green's function through Dyson's equation.

Choosing an important class of perturbation terms to approximate �, one obtains

the corresponding sp Green's function from

g(k; !) = g0(k; !) + g0(k; !)�(k; !)g(k; !)

=
1

g0(k; !)�1 � �(k; !)

=
1

! � �(k)� �(k; !)
; (2.25)

for the case of nuclear matter. The irreducible self-energy contains the e�ect of all

possible excitations due to the interaction with other particles in the medium, and

it acts as a complex, energy-dependent sp potential. Clearly, � is the sum of an

in�nite series characterized by an in�nite graphical summation. When this is the

case, it can be more convenient to represent the diagrammatic expression in terms

of a two-body e�ective interaction, or vertex function, �. The equation of motion of

the single-particle propagator relates the sp propagator to the 2p propagator [59],[60].

Likewise, the 2p propagator is related to the 3p propagator, etc.. For two-particle

interactions, the di�erential equation relating the sp and 2p propagators must be

considered, and we will assume three-body e�ects and higher to be negligible.

2.4 The Ladder Approximation

In the present discussion, the problem of microscopically calculating properties of

nuclear matter amounts to solving for the generalized e�ective potential, or proper

self-energy, of a particle in the nuclear medium. However, for any such calculation

of a self-energy to be implemented, one cannot include all classes of diagrams in the

sum. Instead, one must decide which are most important. It is useful to recall that

the interaction between two nucleons is quite localized, consisting of a short-range
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repulsion (of range, a �= :5 fm) and attraction at slightly larger distance. Therefore,

in the case that the interparticle separation (r0) is much greater than the short-

range part of the interaction, a
r0
� 1 , low-density considerations will be of the

greatest importance. Considering that the saturation density of nuclear matter is

about � �= :17 fm�3, corresponding to an interparticle separation of r0 �= 1:8 fm, we

can see that nuclear matter at saturation density can be approximately considered a

low density interacting Fermi gas.

One may expect that two-body collisions in a dilute medium will bear some re-

semblance to two-body scattering in free space, in which case the scattered (j i)and
free wave functions (j�i) are related by the Lippmann-Schwinger equation, as follows

j i = j�i+ 1

E �H0 + i�
V j i: (2.26)

De�ning a transition matrix, T , such that V j i = T j�i,

V j i = V j�i+ V
1

E �H0 + i�
V j i (2.27)

T j�i = V j�i+ V
1

E �H0 + i�
T j�i (2.28)

yields the equation for T in terms of the scattering potential [61]:

T = V + V
1

E �H0 + i�
T

= V + V
1

E �H0 + i�
V + V

1

E �H0 + i�
V

1

E �H0 + i�
V + ::: (2.29)

In the last equality, the �rst term corresponds to a single scattering, the second to

double scattering, the third to triple scattering, etc. These multiple scattering terms

are the only ones required in describing relative motion of two particles in free space.

In the case of interacting nucleons, this series cannot be truncated by only considering

terms up to some chosen order, since the hard-core nature of the interaction makes

every term divergent. As a result, an in�nite sum must be calculated to compute the

transition matrix and thereby determine the exact e�ect of the interaction on a wave

function.
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Figure 2.2: Summing ladder diagrams to all orders for the e�ective interaction, �,
yields the Bethe-Salpeter equation in the second equality.

This consideration suggests that in the low-density limit, the e�ective interaction,

�, will be dominated by two-body scattering to all orders. This implies that all ladder

diagrams should be included in any calculation for nuclear matter. In considering

the mathematical basis of such an approximation, one observes that the e�ective

interaction contains terms multiplied by a phase space factor of ( a
r0
) for each event in

which a particle and hole interact [62]. All ladder diagrams have such a phase space

factor in common. Other diagrams including an additional hole-line contain an extra

factor of ( a
r0
) and can be discarded.

In the Brueckner scheme, only ladder diagrams involving repeated particle-particle

scattering are used in the calculation of the e�ective interaction. Our in-medium ap-

proximation for � also includes the terms with hole-hole (hh) propagation. The

diagrams in Fig. 2.2 represent Feynman diagrams, and not Goldstone diagrams,

meaning that time ordering from bottom to top is not implied and all time orderings
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are included. This approximation includes the hh scattering terms which are impor-

tant for particle number conservation. Without hh terms, the imaginary part of the

resulting self-energy would have a continuum of values above the Fermi energy and

vanish for energies less than the Fermi energy. The inclusion of hh-scattering terms

is also mandated by the experimentally observed fragmentation of sp strength in the

(e,e0p) reaction. Without an imaginary part of the self-energy below the Fermi energy

due to the presence of hh scattering, this fragmentation does not occur.

The sp propagator can be expressed in terms of the 2p propagator. This result

can be obtained not only through the manipulation of diagrams in the ladder approx-

imation, but also by considering the time derivative of the sp propagator, written in

a general sp basis,

i
@

@t
g(�; �; t� t0) = Æ(t� t0)Æ�� + ��g(�; �; t� t0)

+
1

2

X
��

h��jV j�i gII(t; �t; �t; �t0); (2.30)

where the 2p propagator is de�ned by

gII(t; �t; �t; �t0) = (�i) h	0jT [ay�(t)a�(t)a(t)ay�(t0)] j	0i : (2.31)

Fourier transforming Eq. (2.30) yields:

g(�; �; !) = g0(�; �; !) +
X
Æ

g0(�; ; !) [ (�i)
I d!0

2�

X
��

h�jV jÆ�i g(�; �; !0)

+
1

2

I d!1
2�

I d!2
2�

X
���

X
���

h�jV j��i g(�; �; !1)g(�; �; !2)

g(�; �; !1 + !2 � !) h��j�(!1; !2; !1 + !2 � !) jÆ�i ] g(Æ; �; !)
(2.32)

This represents an alternative form of the Dyson equation, identifying the quantity in

square brackets as the self-energy. This equivalence is diagrammatically represented

in Fig. 2.3. To obtain this result, one employs the relation between the 2p propagator

and e�ective interaction shown in Fig. 2.4.
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Σ
Γ

+=

Figure 2.3: The diagrammatic expression for the self-energy in the ladder approxi-
mation relating � to the NN interaction, the e�ective interaction, the noninteracting
dressed 2p propagator, and the sp propagator.

gII Γ= +

Figure 2.4: The diagrammatic representation of the relation between the interacting
2p propagator, the noninteracting dressed 2p propagator, and the e�ective interaction
in the ladder approximation.
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Γ
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Figure 2.5: Diagrammatic expression of the Bethe-Salpeter equation, Eq. (2.33), for
the e�ective interaction.

2.5 Self-Consistent Green's Functions

One can illustrate the procedure for solving for the interacting sp propagator in

nuclear matter by considering the following steps:

1. Calculate the e�ective interaction from the NN interaction as shown diagram-

matically in Fig. 2.5 using an ansatz for the interacting propagator.

The actual solution is obtained in an angular-momentum-coupled partial-wave

basis in momentum space

hkrj�JSTLL0 (P;
)jk0ri = hkrjV JST
LL0 jk0ri

+
1

2

1

(2�)3
X
L00

Z
dq q2hkrjV JST

LL00 jqigIIf (q; P;
)hqj�JSTL00L0(P;
)jk0ri:

(2.33)

This result is obtained by averaging the noninteracting 2p propagator over all

angles as follows

gIIf (q; P;
) =
i

2�
h
Z
d!g(

�!
P +�!q ; 


2
+ !)g(

�!
P ��!q ; 


2
� !)i� (2.34)

= h�
Z "F

�1

Z "F

�1
d!d!0

Sh(
�!
P +�!q ; !)Sh(�!P ��!q ; !0)


� ! � !0 � i�

+
Z 1

"F

Z 1

"F
d!d!0

Sp(
�!
P +�!q ; !)Sp(�!P ��!q ; !0)


� ! � !0 + i�
i�; (2.35)

where the angular brackets denote angle-averaged quantities.
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Σ = Γ

Figure 2.6: Diagrammatic expression of Eq. (2.36) relating the self-energy to the
e�ective interaction and dressed sp propagator.

2. Using the diagonal elements of �, calculate the self-energy according to Fig.

2.6. This is mathematically expressed in the following way

�(k; !) = � i

(2�)4

Z
d3q

Z
d!0hk; qj�(P;
)jk; qig(q; !0): (2.36)

The actual evaluation of this result is performed in the partial wave basis. This

leads to a summation over partial wave channels and two integrations involving q

(the magnitude of sp momentum) and !0 (which explores the o�-shell nature of the

propagator).

3. Determine the new sp propagator from the Dyson equation which can be

expressed as illustrated in Fig. 2.7 in the following way:

g(k; !) = g0(k; !) + g0(k; !)�(k; !)g(k; !) (2.37)

=
1

! � k2

2m
� �(k; !)

(2.38)

There are three primary di�erences between the sp propagator in calculations in

which only the sp energy is modi�ed by the medium and the sp propagator obtained

with the scheme outlined above.

1. The sp energies, "k =
k2

2m
+ U(k), where U(k) represents the average potential

due to the interaction, instead become quasiparticle energies, "qp , identifying the

center of the peak in the strength distribution.
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Σ+=

Figure 2.7: Diagrammatic expression of the Dyson equation, Eq. (2.37) from the sp
propagator in terms of the self-energy and the noninteracting sp propagator.

2. There is no longer a Æ-function peak for sp excitations, but rather a continu-

ous strength distribution which, near to the quasiparticle peak, is represented by a

lorentzian with a �nite width, except at kF .

3. Away from the quasiparticle peak, a k-independent high-energy contribution

is obtained and, at low energy, a k-dependent distribution arises on account of the

coupling to 2h-1p excitations.

Beginning with mean-�eld propagators, Vonderfecht has performed a �rst solu-

tion of the scheme outlined above starting with mean-�eld propagators, producing

a dressed propagator and corresponding self-energy. The next step would clearly be

to repeat the above outlined set of equations with the new, dressed sp propagator.

The above set of equations must be iterated until it is self-consistent, stated as the

following condition:

[input sp propagator] = [output sp propagator]

A more detailed description of convergence conditions will be given in the following

chapter.
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Chapter 3

Computational Scheme

3.1 Representation of Single-Particle Quantities

The solution of the scheme outlined in Chapter 2 with fully dressed propagation

between interactions has not been completely implemented so far. An advanced ap-

proximation has been made by Bo_zek [64] with an emphasis on pairing properties

using a semi-realistic, separable interaction. Other steps toward a complete solution

have been presented in Refs. [33],[65],[66], and [63]. Nevertheless, a complete solution

of this iteration scheme with the full propagator and a realistic interaction has not

been presented. A reason for this may be the computational di�culty. Straightfor-

ward calculation with enough points to be useful requires a great amount of computer

time and memory.

Parametrization of the sp spectral functions at each step to speed up the itera-

tion process was proposed by Gearhart [41]. While this may be the best option for

speeding up the calculation, it has presented some complications. For instance, the

spectral function and self-energy should contain equivalent information, and the self-

energy is a smooth function while the spectral functions have sharp peaks and broad

backgrounds. Thus, �tting the spectral function with a parametrization requires the

sum of at least two functions, one sharp (modi�ed lorentzian) peak and one broad

background [67]. The resulting self-energy can be obtained from the spectral function

by inverting the Dyson equation:

Im �(k; !) =
Im g(k; !)

(! � k2

2m
� Re g(k; !))2 + (Im g(k; !))2

; (3.1)

where Im g(k; !) represents the spectral function up to a constant. The change in
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derivative of the spectral function, where one function ceases to dominate and the

other takes over, creates nonphysical structures in the imaginary part of the self

energy. For this reason, a parametrization of the smoother self-energy has been

chosen for this work yielding both well-behaved self-energies and spectral functions.

We will now illustrate that the sp spectral function is completely determined from

a set of parameters which describe Im �. The spectral function can be written in

terms of the self-energy as,

S(k; !) =
1

�

Im �(k; !)

[! � k2

2m
� Re �(k; !)]2 + [Im �(k; !)]2

; (3.2)

where Re �(k; !) = �HF(k) + Re ��(k; !). Therefore, the spectral function can

be completely expressed in terms of Im �(k; !), Re ��(k; !), and �HF(k). The

Re ��(k; !) is constructed from the imaginary part of the self-energy as follows

Re ��(k; !) = P
Z �F

�1
d!0

Im �(k; !0)

! � !0
� P

Z 1

�F
d!0

Im �(k; !0)

! � !0
(3.3)

= Re ��>(k; !) + Re ��<(k; !): (3.4)

The correlated Hartree-Fock (HF) contribution, �HF(k), in a given iteration step is

determined as follows. The quasi-particle (qp) spectrum identi�es the location of the

peak of the spectral function and is determined by

"qp =
k2

2m
+ Re �(k; "qp): (3.5)

The qp spectrum from a previous iteration, (i � 1), can be used to determine the

correlated Hartree-Fock term, �HFi (k) as follows. From

�HFtrial(k) = "i�1;qp(k)� k2

2m
� Re ��

i (k; "i�1;qp(k)); (3.6)

one has all of the ingredients to calculate a spectral function, Strial(k; !) to be used

in a calculation of the distribution function, ntrial(k), which is an ingredient in the

new correlated HF self-energy (i),

�HFi (k) =
Z
d3k0 V (k; k0)ntrial(k

0); (3.7)
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where V (k; k0) = hkk0jV jkk0i. This completes the construction of a new qp spectrum,

but most important for the next iteration, it yields a new Fermi energy by �nding

the solution of the following equation for k = kF .

! = "k � k2

2m
� Re �(k; !) (3.8)

The qp spectrum experiences only minor changes from step to step, but we calculate

the spectrum explicitly at each step to monitor convergence. This is also done with

the parameters used to describe Im �.

After determining that the SCGF iteration scheme can be performed by parametriz-

ing the imaginary part of the self-energy, we now turn to the choice of functional form

for Im �(!). The imaginary part of the self-energy requires the use of two di�erent

energy scales for an an adequate �t: a linear scale for ! near �F , and a scale governed

by log(!��F ) for ! far from �F . Original results of Vonderfecht and the parametrized

�t used in the present work are shown in Figs. 3.1 to 3.4. While the imaginary part of

the self-energy is smooth in !, it also varies smoothly in momentum, as can be seen in

the Vonderfecht values shown in Figs. 3.2 and 3.4. This illustrates that the imaginary

part of the self-energy is a particularly suitable choice for a parametrization since a

functional form in ! will depend on parameters which will also be continuous in k.

The analytical form best suited to the results of Vonderfecht for energies far from "F

is constructed using Gaussians of the following form,

Gi = Pi expf�(log j! � "F j � Ci)
2

2W 2
i

g; (3.9)

yielding the following representation of the imaginary part of the self-energy

Im �(k; !) =
4X
i=1

Gi: (3.10)

The �t is generated using the functional form for the imaginary part of the self-

energy which employs the sum of two Gaussians on either side of "F . On the particle

side of the Fermi energy, at high energy we will employ a Gaussian according to Eq.
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Figure 3.1: Original results for the imaginary part of the self-energy, Im �(k; !�"F ),
calculated by Vonderfecht using a starting point of mean-�eld propagators for energies
greater than the Fermi energy.
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Figure 3.2: Parametrization of the imaginary part of the self-energy for energies
greater than the Fermi energy using the functional form discussed in the text.

(3.9) which will be referred to as G1. This structure re�ects the e�ects of short-range

correlations and is nearly momentum independent at a given density. At low energy

on the particle side, G2 contains the e�ects of the tensor correlations and low-lying

excitations. To properly describe the behavior near the Fermi energy, at energies

below its peak, a linear scale for G2 is employed. The width is determined by the

condition that the value at half the distance between the peak and the Fermi energy

is half of the maximum. To ensure quadratic behavior at the Fermi energy while

keeping the function and its �rst derivative continuous, the following reduction factor

is applied,

fkill(!) = f ! � "F
Ci � "F

gx; (3.11)

where x varies linearly in ! from zero at ! = Ci to two at ! = "F . On the hole side

of the Fermi energy, at low energy, G3 is employed. Its functional form mirrors that

of G2. At even lower energy is the fourth Gaussian structure, G4, which is important
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Figure 3.3: Original results for the imaginary part of the self-energy calculated by
Vonderfecht using a starting point of mean-�eld propagators for energies less than
the Fermi energy.
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Figure 3.4: Parametrization of the imaginary part of the self-energy for energies less
than the Fermi energy using the functional form discussed in the text.

for the description of high-momentum components. At high momentum, k > kF , its

peak location has a (� k2

2m
) dependence.

Given a good �t to a realistic Im � guarantees a good �t of the corresponding

spectral functions. Another important property of this approximation is that the

parameters determining these self-energies vary smoothly with k such that they can

be interpolated to arbitrary sp momenta. The initial values for these parameters are

displayed in Fig. 3.5. Note again that the high-energy Gaussian parameters have

only weak k-dependence, if any. This is the source of the k-independent high-energy

tail in the spectral functions expected in any description of short-range correlations

[68]. Figs. 3.1 and 3.3 illustrate that the use of these Gaussians allows an accurate �t

and generates appropriate spectral functions while maintaining a manageable form.

A more direct comparison of numerical results and their analytical �t is illustrated in

Figs. 3.6 to 3.7. The parametrized fIm �g plays a key role in the present iteration

scheme. The twelve parameters used to describe it are displayed in Fig. 3.5.
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in the text.

34



-200 0
0.000

0.005

0.010

0.015

0.020

0.025

0.030

ϖ - εf    (MeV)

0 200 400
0.0000

0.0005

ϖ - εf    (MeV)

-400 -200 0
1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

ϖ - εf    (MeV)

1 10 100 1000 10000 100000 1000000 1E7
1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

ϖ - εf    (MeV)

-200 -150 -100 -50 0

0

10

20

30

40

Im
 (Σ

)  
  (

M
eV

)

ϖ - εf    (MeV)

1 10 100 1000 10000 100000 1000000 1E7
-300

-250

-200

-150

-100

-50

0

Im
 (Σ

)  
  (

M
eV

)

ϖ - εf    (MeV)

Figure 3.6: Comparison of original results of Vonderfecht (solid lines) and their
parametrized representation (dashed lines) for k = 0. The top and middle plots dis-
play the spectral function and the bottom plots show the corresponding Im �(!�"F ).
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An important property of this �t is that the sp strength sum rule is met automat-

ically due to the fact that Im � ! 0 for ! ! �1. Then, the �t is also constrained

separately to describe the momentum distribution. Additionally, the �rst moment of

the sp strength is also constrained automatically by the �t. This has the advantage

of constraining the binding energy obtained by the �t.

The values of the parameters along with Fermi energy, particle density, and bind-

ing energy will be used to gauge the level of self-consistency. A nontrivial property of

a self-consistent solution is that the calculated particle density obtained from the mo-

mentum distribution exactly corresponds with the Fermi momentum [14] according

to � = 2k3F=3�
2.

3.2 Noninteracting Two-Particle Propagator

With the description of the sp propagator complete, the next step in the iteration

scheme is the computation of the noninteracting 2p propagator. For a self-consistent

solution, the sp propagator must be used to determine the dressed but noninteracting

2p propagator, gIIf ,

gIIf (k1; k2;
) =
i

2�

Z
d! g(k1; !) g(k2;
� !); (3.12)

which is used in the calculation of the e�ective interaction. Inserting the spectral

representation of the propagator, Eq. (2.8), this expression corresponds to the energy

convolution of the two sp propagators. The terms with both poles on the same side

of the real axis can be evaluated with a contour in the other half of the plane and

will not contribute, leaving only hh and pp propagation:

gIIf (k1; k2;
) = �
Z
d!

Z
d!0

Sh(k1; !)Sh(k2; !
0)


� ! � !0 � i�

+
Z
d!

Z
d!0

Sp(k1; !)Sp(k2; !
0)


� ! � !0 + i�
: (3.13)

To calculate this quantity, we will consider the sp spectral function as the sum of two

functions: a Lorentzian peak (P ) near "qp and a smooth background (B = S � P ).
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For the calculation of the gIIf (k1; k2;
), a Lorentzian is a good approximation around

the peak of the spectral function, in which case,

P (k; !) =
1

�

z(k)2jI(k)j
(! � "qp(k))2 + z(k)2I(k)2

; (3.14)

where z = 1=(1�R0), I is the on-shell value of the imaginary part of the self-energy,

and R0 is the on-shell value of the derivative with respect to energy of the real part

of the self-energy. Since this approximation is only applicable near the peak, it is

multiplied by a modifying function so that it tends quadratically to zero at a distance

of j! � "qpj = j10Ij. As a result, the background is a more smoothly varying object,

B(k; !) = S(k; !)� P (k; !) (3.15)

that can be handled numerically.

The imaginary part of the hh-term of the noninteracting 2p propagator [69] is

given by

Im gII>f (k1; k2;
) = ��
Z "F


�"F
d! Sh(k1; !)Sh(k2;
� !)

= ��
Z "F


�"F
d! [P (k1; !) +B(k1; !)] [P (k2;
� !) +B(k2;
� !)]

= ��
Z "F


�"F
d! [P1(!)P2(
� !) + P1(!)B2(
� !)

+ B1(!)P2(
� !) +B1(!)B2(
� !)] (3.16)

which presents four terms to be integrated separately. The �rst term will only con-

tribute in the case of k1 < kF , 
 � "F < "qp(k1) + j10I1j, k2 < kF , and 
 � "F <

"qp(k2)+j10I2j. When these conditions are met, there will be a peak-peak contribution

in the integrand to consider, and any integration required over it can be performed

analytically. Since the background is not as strongly varying in energy as the peaks,

the second and third term can be evaluated by approximating the background as a

constant over the width of the peak and analytically integrating over the lorentzian

peak. The fourth term can be evaluated numerically as a convolution of two well-

behaved functions. This procedure allows a quick evaluation while still employing the

complete S(k; !).
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Eq. (3.13) implies that the real and imaginary parts of gIIf obey a dispersion

relation. For the calculation of the e�ective interaction, �, both the real and imaginary

part of the noninteracting 2p propagator are required. The real part, Re gIIf , is

therefore calculated via the appropriate dispersion relation:

Re gIIf (k1; k2;
) =
1

�
P
Z 2"F

�1
d
0

Im gIIf (k1; k2;

0)


� 
0

� 1

�
P
Z 1

2"F
d
0

Im gIIf (k1; k2;

0)


� 
0
: (3.17)

This information is then stored on a three-dimensional grid of (k1; k2;
) to be in-

terpolated for use in the calculation of the e�ective interaction. Interpolation will

not be accurate near the peak of Im gIIf for sp momenta near kF . In this case, a 2p

Lorentzian approximation is employed [69],

Im gIIf (k1; k2;
) =
zII

�

jAIIj
(
� 
0)2 + (AII)2

(3.18)

Re gIIf (k1; k2;
) =
zII

�

(
� 
0)

(
� 
0)2 + (AII)2
: (3.19)

where zII = z1z2, A
II = zII(I1 + I2), and 
0 = "qp(k1) + "qp(k2). As a result, g

II
f can

be evaluated in terms of (
; k1; k2).

3.3 Solution for the E�ective Interaction

Referring to the previous diagrammatic form of the Bethe-Salpeter equation, Fig.

2.5, one observes that if gIIf and V are known, the only unknown in the equation is

the �-matrix. A noninteracting 2p propagator is calculated on a discrete set of sp

momenta, k1 and k2, for use in solving the Bethe-Salpeter equation. This solution

requires the use of the center of mass and relative momenta, where the relationship

of the variables is illustrated in Fig. 3.8 such that

k1 =

s
P

4

2

+ q2 + Pqcos � (3.20)

k2 =

s
P

4

2

+ q2 � Pqcos �; (3.21)
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where P is the total momentum of the 2p system and q is the relative momentum.

To obtain a �-independent function, an integral over � is required for each (P; q;
)

according to 2.34, using a prescription proposed by Brueckner and Gammel [70]. The

results of Ref. [71],[72],[73] have demonstrated that exact treatment of the angular

dependence has a minor e�ect on binding energies and does not change the saturation

with respect to an angle-averaged treatment. For certain P and q, angles exist for

which k1 and k2 are on opposite sides of the Fermi momentum, and Pauli e�ects

prevent hh and pp propagation in the IPM for which there is no contribution to gIIf .

Using dressed sp propagators for these momenta, all angles contribute to both pp and

hh terms since their spectral functions extend to all energies. The resulting gIIf (k1; k2)

still contains strong Pauli signatures instead of complete Pauli blocking.

After the calculation of gIIf , the Galitskii integral equation can be solved according

to [41],

�JSTLL0 (P;
)(qi; qj) = V JST
LL0 (qi; qj)

+
1

2

1

(2�)3
X
L00

Z
dqkq

2
kV

JST
LL00 (qi; qk)g

II
f (qk; P;
)�

JST
L00L0(P;
)(qk; qj);

(3.22)

which is equivalent to Eq. (2.33) using a slightly di�erent notation. In order to

numerically evaluate the integral, one can use the method of Gaussian quadratures

to create a mesh of momenta fqkg and weights fwkg [38],[68],

�JSTLL0 (P;
)(qi; qj) = V JST
LL0 (qi; qj)+

X
L00k

wkq
2
kV

JST
LL00 (qi; qk)g

II
f (qk; P;
)�

JST
L00L0(P;
)(qk; qj):

(3.23)

Therefore, the integral equation has been replaced with a matrix equation. One can

rewrite the matrix equation for each partial wave with quantum numbers (JST ) and

each (P;
) as

X
L00k

[ÆLL00Æik � wkq
2
kVLL00(qi; qk)g

II
f (qk)]�L00L0(qi; qj) = VLL0(qi; qj): (3.24)
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Figure 3.8: An illustration of the change of variables from fk1; k2j to fP; q; �g. The
noninteracting 2p propagator must be integrated over the � variable (angle-averaged)
for use in the solution for the e�ective interaction in a partial-wave expansion.
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The resulting matrix equation,

A � � = V; (3.25)

uses

Aij = [ÆLL00Æij � wjq
2
jVLL00(qi; qj)g

II
f (qj)]:

Eq. (3.25) can be solved via a matrix inversion to yield the e�ective interaction

according to

� = A�1 � V: (3.26)

The accuracy of the e�ective interaction resulting from the matrix inversion is

dependent on the choice of relative momentum mesh chosen for each (P;
). Any

mesh fqkg which will yield a correct A�1, and therefore produce a reliable �-matrix,

must properly contain the structure of the 2p propagation between interactions. A

good test of the validity of a fqkg mesh is the accuracy of the noninteracting 2p

density of states, �IIf (P;
), where [43]

�IIf (P;
) = � 1

�

Z
dq q2 Im gIIf (q; P;
): (3.27)

A gIIf (P;
; qk) which yields a physically reasonable �IIf is required to generate a reli-

able e�ective interaction from the inverted matrix, A�1. More experience is available

with grids that deal with the real part in Ref. [38]. The grids employed in this work

take into account the structures of both the real and imaginary parts of gIIf (P;
; qk).

In this work, the S, P , and D partial waves of the e�ective interaction are calcu-

lated explicitly. The S-waves make the greatest contribution to the imaginary part

of the self-energy at normal density, and the contribution of the P -waves is approx-

imately an order of magnitude less [40]. Since the D-waves are yet another order of

magnitude weaker than the P -waves, higher waves are expected to have a negligible

e�ect on the imaginary part of the self-energy. The e�ective interaction is only ex-

plicitly solved for these sets of waves. This is consistent with the conclusion of Ref.

[68] that contributions to the e�ective interaction of partial waves with J > 2 are
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well approximated by the bare interaction. The higher partial waves are therefore

included in the bare interaction contributing to the Hartree-Fock term as in [14].

At the empirical saturation density, no pairing instability is observed when dressed

propagators are used. This is in stark contrast to the pairing instability obtained

when mean-�eld propagators are used [43]. It is therefore reasonable to expect that

no pairing instabilities will be encountered at higher densities either [74]. Since the

sp states near kF have the greatest mean-�eld character, these are the states that

contribute most to bound-pair states. An important e�ect of the inclusion of o�-shell

propagation is the depletion of the k = kF state, such that its quasiparticle peak

contains only �70% of the sp strength in the ansatz propagator. Correspondingly,

for the 2p state near 2"F , a �50% reduction in strength is obtained, accounting for

the disappearance of the pairing instabilities at this density. The absence of pairing

can also be seen in the NN cross-sections and phase shifts in Ref. [43]. At lower

densities, one expects the instability to occur since deuterons must form in the limit

of zero density.

3.4 Single-Particle Self-Energy

Lastly, to solve for the imaginary part of the next iteration's self-energy, we need only

the imaginary part of the diagonal elements of the e�ective interaction. This is the

case in nuclear matter because the self-energy is a function of a single sp momentum.

Since a single hole- or particle-line closes the e�ective interaction to determine this

self-energy, only diagonal elements will be required and the same initial and �nal 2p

states are probed. These diagonal elements can be separated schematically in three

terms as follows,

� = V +��< +��>: (3.28)

The �rst and second terms must be closed with a hole line and the third term is

closed with a particle line. The �rst term yields the Hartree-Fock contribution. The

remaining terms are contained in the following expression, given in a partial wave
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basis,

��(k; !) = � i

16�(2�)4
X
LSTJ

(2T+1)(2J+1)
Z
d3q

Z
d!0��LJST (K; kr; !+!

0) g(q; !0):

(3.29)

To evaluate the imaginary part of the self-energy, only the �� terms need to be

considered explicitly, suppressing quantities related to the partial wave basis:

Im �(kr; K;
) = Im ��>(kr; K;
); for 
 < 2"F

= Im ��<(kr; K;
); for 
 > 2"F : (3.30)

The e�ective interaction has already been shown to obey a dispersion relation which

can be written:

��>(kr; K;
) =
1

�

Z 2"F

�1
d
0 Im ��>(kr; K;


0)


� 
0 � i�
(3.31)

��<(kr; K;
) =
1

�

Z 1

2"F
d
0 Im ��<(kr; K;


0)


� 
0 + i�
(3.32)

For the evaluation of the self-energy, it will be useful to employ this separation of

��(kr; K;
). Using Eqs. (3.30) to (3.32) in Eq. (3.29), only terms with poles

on opposite sides of the real axis of the complex !0-plane will contribute. One can

express the two resulting contributions to the imaginary part of the self-energy in the

following form:

Im ��<(k; !) = � 1

(2�)3

Z
d3q

Z 2"F�!

"F
d!0 Im �>(K; kr; ! + !0)Sp(q; !

0) (3.33)

Im ��>(k; !) = � 1

(2�)3

Z
d3q

Z "F

2"F�!
d!0 Im �<(K; kr; ! + !0)Sh(q; !

0): (3.34)

The real part of �� can be found via a dispersion relation, Eq. (3.4), and the Hartree-

Fock term is obtained from Eq. (3.7). The self-energy is now fully determined,

�(k; !) = �HF (k) + ��(k; !): (3.35)
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In the evaluation of Eqs. (3.33) and (3.34), one can save computational time by

making a change of variables, q ! K [41]. In this case, as illustrated in Fig. 3.9,

K =
jk + qj

2
(3.36)

kr =
jk� qj

2
(3.37)

and the change of variables can be performed noting that

jqj = j2K� kj =
p
4K2 + k2 � 4Kk cos �: (3.38)

The q-dependence of the e�ective interaction is replaced by a fK; �g dependence.

The integration over all internal variables will now be performed over these variables

numerically. To do so, one must consider which key points to use to build an integra-

tion mesh with gaussian quadrature. Of great concern in such a calculation are Pauli

e�ects, and detailed information on building a suitable grid can be found in Ref. [38].

For each K, the �-value for which q = kF signals a discontinuity in S(q; !), so this

angle will be a key point in building the appropriate mesh. However, such a critical

angle does not exist for K < k � kF or for K > k + kF . These two conditions yield

key points to consider in the construction of the K mesh and represent Pauli e�ects.
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Figure 3.9: An illustration of the change of variables from (k; q) to (K; kr; �), used
for easier numerical evaluation of the imaginary part of the self-energy.
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Chapter 4

Results and Applications

In this chapter, results of the iteration scheme for self-consistent propagators will

be presented. The solution at saturation density is shown in detail including results

related to the e�ective interaction in Section 4.2, the self-energy in Section 4.3, and

the sp propagator in Section 4.4. The �rst section discusses the process of iterating

to a self-consistent solution of the Dyson equation as coupled to the ladder equation

for the e�ective interaction. To explore saturation properties of the present scheme,

another density corresponding to kF = 1:45 fm�1 is considered in Section 4.5.

4.1 Iteration of the Single-Particle Propagator

To iterate to a self-consistent solution to the Dyson equation, the imaginary part of �

is parametrized at each step. The stability of these parameters will be monitored to

establish the convergence properties. Furthermore, the Fermi energy, particle density,

kinetic energy, potential energy, and binding energy will be of primary importance in

assessing self-consistency. The convergence process requires several iterations includ-

ing the dominant S waves and, in a �nal step, the inclusion of the P and D waves.

The results for the last three steps are discussed in detail.

As an example of the convergence properties of the parameters, consider the value

of the peaks of the gaussians representing the imaginary part of the self-energy. The

gaussian representing the high-energy peak is very stable during iterations. However,

G2 and G3, describing contributions of excitations near the Fermi energy, are more

sensitive. After several iterations, they settle to �nal values shown in Figs. 4.1 and

4.2. Because these peaks are located within a few hundred MeV of the Fermi energy,
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Figure 4.1: Parameters for the peak value of G2, which describes the imaginary part
of the self-energy in the particle domain near the Fermi energy.

the values have a considerable dependence on k and re�ect the in�uence of the tensor

force to admix low-lying states [40]. The ansatz solution given by the full line in Figs.

4.1 and 4.2 yields much larger magnitudes than the iterated solution for values at

low-k. The values of these parameters determine the number of iterations needed to

reach the level of self-consistency obtained in the present work. The corresponding

gaussians are the source of fragmentation and depletion of the quasiparticle states at

momenta near the Fermi momentum and below. Since these peaks occur in the qp

energy domain for these momenta, they can have an important e�ect on the structure

of the spectral function. Their magnitude is over-estimated when calculated starting

with independent particles, as shown in Figs. 4.1 and 4.2. This illustrates a general

numerical point of this SCGF scheme. Since the ansatz Im � was calculated using

the IPM, it tends to overestimate the correction to the IPM.

In Table 4.1, we consider the iterative behavior of the Fermi energy, energy per

particle, potential energy and kinetic energy. All energies in this table are expressed
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Figure 4.2: Parameters for the peak value of G3, which describes the imaginary part
of the self-energy in the hole domain near the Fermi energy.

in MeV. This table contains the results of the last three iterations using only S wave

contributions to the e�ective interaction and corresponding self-energy. The SCGF

scheme was iterated until these results displayed a reasonable level of self-consistency.

Then, the S wave solution to the sp propagator was used to calculate the contributions

of P and D waves. The corresponding result is given in the second to last line of

the table. The inclusion of higher waves yields a larger contribution as compared to

BHF calculations using the standard choice of the sp spectrum [68],[14]. The present

scheme involving four gaussians, which accurately described the S wave contribution

to the imaginary part of the self-energy, may have to be extended to account for

the contribution of the higher waves self-consistently. To estimate the self-consistent

solution including all waves, the last line in the table displays values obtained from

an imaginary part of the self-energy calculated from the average of the parameters

corresponding to the previous two lines of the table. The table is included here to

illustrate the approach to self-consistency of the results. More discussion of these
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iteration "F E/A KE/A PE/A �(fm�3)

7 -8.78 -10.62 48.50 -59.11 .167
8 -8.11 -10.89 47.74 -58.73 .168

9 S waves -7.64 -11.20 48.56 -59.83 .167
all waves -14.26 -16.51 52.85 -68.80 .169

average result -11.94 -14.76 53.91 -68.67 .168

Table 4.1: The Fermi energy, energy per particle, kinetic energy, potential energy and
particle density calculated for the iterations described in the text.

results can be found in Section 4.4. For any real Fermi �uid, the binding energy is

equal to the Fermi energy [75], and this condition may also be a gauge of the literal

physical value of our results [20] as shown in Table 4.1.

In the results including only S waves, one notices that the binding energy is more

stable from iteration to iteration than the potential or kinetic energies separately.

Changes of potential and kinetic energies with iteration tend to cancel one another.

This is due to the sampling of the sp hole-strength with k2 in these quantities which

can amplify small changes from iteration at high-k. Since these contributions are

concentrated at energies that vary as � k2

2m
, the net contribution to the binding tends

to cancel, as in Eq. (2.19). The Fermi energy is a more sensitive quantity, but shows

reasonable self-consistency at the end of the S wave iterations. This sensitivity is

related to the properties of G2 and G3 which have a strong e�ect on the location of

the Fermi energy. This location is obtained as the solution for the pole of the on-shell

energy condition, Eq. (3.5), for kF . The small shifts in the peak values of G2 and G3

during iteration can move the Fermi energy accordingly.

The behavior of the momentum distribution through the iteration process also

displays an interesting convergence behavior. The results from Ref. [40], where the

momentum distribution was calculated starting from mean-�eld propagators, yield an

occupation at low momentum of 0:83, which should be compared to the mean-�eld

value of 1. This result represents an overestimate of the self-consistent result of 0:873

if only S waves are considered and 0:865 if S, P , and D waves are included. Fig.4.3
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Figure 4.3: The momentum distribution, n(k), for several iterations. The ninth
iteration values are found by averaging the eighth iteration output and input.

shows the behavior of the occupation for the iterations shown in Table 4.1.

The behavior of other on-shell characteristics with iteration is illustrated, for the

same iteration steps as discussed above, in Figs. 4.4 to 4.7. These values gauge

the change in the character of the spectral function near the qp energy and give

an intuitive picture of some e�ects of the steps leading to self-consistency. The sp

spectrum and corresponding sp potential are shown in Figs. 4.4 and 4.5, respectively,

where

U(k) = "qp(k)� k2

2m
: (4.1)

The S wave solutions show self-consistency, but a signi�cant change in these values

is obtained when higher waves are included. This in�uence of higher waves is greater

at higher momenta, and their inclusion has only minor e�ect at low momentum.

Figure 4.6 displays the qp strength, z(k) , as used in Eq. (3.14). The �nal values

are bounded between the values in the IPM and those of the ansatz propagator [40].

At kF the qp strength represents the jump in the occupation number. The value for
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Figure 4.4: The quasiparticle energy, found as the solution to Eq. (3.5), for the same
set of iterations as in Table 4.1.
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Figure 4.5: The sp potential, determined as U(k) = "qp(k) � k2

2m
, for the iteration

discussed in Table 4.1.
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Figure 4.6: The quasiparticle strength as determined from the real part of the self-
energy for the same set of iterations as Fig. 4.3.

the ansatz is z(kF ) = 0:72 while the present results yields z(kF ) ' 0:80, as shown

in Fig. 4.6. This illustrates again that the self-consistent result is less correlated

than the solution starting from mean-�eld propagators. This is also re�ected in the

on-shell value of the imaginary part of the self-energy, I(k), which can be interpreted

as the width of the qp distribution. For low momenta, k < 2 fm�1, subsequent

iteration results in lower values of I(k), as seen in Fig. 4.7. For higher momenta,

where I(k) is dominated by G2 this is not the case in accordance with Fig. 4.1. At

these momenta, self-consistent propagators mix more strongly with 2p1h states than

propagators calculated by starting from the mean �eld.

The imaginary part of the self-energy for k = kF is shown for iteration steps leading

to self-consistent functions. The self-energy at low and high energy is illustrated in

Figs. 4.8 and 4.9, respectively. These con�rm the discussion above, showing that

each of the four gaussians approaches self-consistency. In the self-consistent solution,

a non-negligible low-energy tail is present. These low-energy contributions provide
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Figure 4.7: The value of the imaginary part of the self-energy at the quasiparticle
energy. This value is a gauge of the width of the quasiparticle peak.

binding in a region that is below the threshold present in calculations starting from

mean-�eld propagators. The sp strength in this region contributes to binding in a non-

negligible way and is critical to obtain accurate values. These components provide

a strong argument for the importance of self-consistency in calculating the e�ects of

short-range correlations.
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Figure 4.9: The high-energy behavior of the imaginary part of the self-energy for the
iterations discussed in Fig. 4.8.
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Figure 4.10: The dressed but noninteracting 2p density of states in MeV�1 as a
function of 
 � 2"F , which serves as an important numerical tool in designing the
relative momentum mesh for the matrix inversion for the e�ective interaction.

4.2 E�ective Interaction

A primary ingredient in the iteration scheme is the matrix inversion, required to yield

the e�ective interaction. The choice of the q-mesh is critical to the accuracy of the

e�ective interaction when using realistic sp propagators, as discussed in Section 3.3.

When an appropriate mesh is chosen, it yields an accurate non-interacting 2p density

of states f�IIf g, and therefore can be expected to give the appropriate e�ective inter-

action. The �IIf calculated with the q-mesh chosen in this work is shown in Fig.4.10 for

center of mass momenta, P = 0 (full line); 2kF (dashed line); and 4:4 fm�1 (dotted line).

In the case of zero center of mass momentum, the density of states at the Fermi mo-

mentum is proportional to z2(kF ). In the case of higher center of mass momenta,

Pauli e�ects dominate near 2"F , with a resulting sharp minimum. When the numer-

ically calculated �IIf contains all of these features in a reliable form, one can expect

to obtain an accurate imaginary part of the e�ective interaction from the matrix

inversion.

In Fig 4.11, the imaginary part of the diagonal elements of e�ective interaction
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Figure 4.11: Diagonal elements of the imaginary part of the e�ective in-
teraction as a function of 
 � 2"F at q = 0:7 fm�1 for K =
0 (solid); kF (dashed); and 4:4 (dotted) fm�1 .

re�ect phase space features at low energy, decreasing where �IIf is restricted by Pauli

e�ects near 2"F . Due to the use of dressed propagators, there is no longer any

lower limit below which the Im �(K; q;
) goes to zero. The dominant feature of

the interaction is the pronounced peak at high energy, which occurs at 10 GeV for

the Reid potential. Because this interaction can connect any sp momentum state

to high-momentum states, which contribute strongly at high energies, there is little

momentum dependence of this feature.

Figure 4.12 illustrates of the e�ect of each partial wave on the diagonal elements

of the imaginary part of the e�ective interaction as a function of q for K = 0 and


 = 2"F . Once again, S waves provide a dominant e�ect at low momentum and high

momentum, but near q = 2 fm�1, the P contributions are of greatest magnitude. Self-

consistent solution of the S waves has some e�ect on the matrix elements, comparing

these results with those of Ref. [41]. The inclusion of the P waves as shown is not self-

consistent. One may expect that self-consistency at this level will be important where

they dominate, and the greatest contributions of the P waves occurs at the minimum
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Figure 4.12: The contributions of the imaginary part of the e�ective interaction shown
with all waves included (solid line), S waves (dotted), P wave (dashed), and D waves
(short-dashed).

of the S contribution. Because the contributions of S and P waves appear in di�erent

regions, the extension of this work to include P and D waves self-consistently will

require an additional gaussian at the self-energy level.
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4.3 Self-Energy

Figure 4.13 illustrates the self-consistent solutions of the imaginary part of the self-

energy including only S waves for energies below and above the Fermi energy for

several di�erent momenta. While the high-energy regime is not signi�cantly di�erent

from a calculation using mean-�eld propagators, there are some important di�erences

that come from using dressed propagators. Near the Fermi energy, there is an overall

decrease of the imaginary part of the self energy as shown in Fig. 4.8. The e�ect

of these low-lying states is therefore overestimated when mean-�eld propagators are

used. At large negative energy, we assert that Im � becomes non-negligible but

requires several iterations to achieve self-consistency.

In Fig. 4.14, the self-energy including only S waves is illustrated by the solid line

and the self-energy including all partial waves is shown by the dashed line for k = kF .

Above the Fermi energy, the self-energy is dominated by the S wave contribution,

but there is an important contribution below the high-energy peak from the other

partial waves. Below the Fermi energy, the shape is not changed by the inclusion

of higher waves, but the overall magnitude is increased by � 20% near the peak.

These di�erences combine to generate a substantial contribution to the binding and

sp spectrum as discussed in Section 4.1.
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Figure 4.13: The imaginary part of the self-consistent self-energy including S waves
only as a function of ! � "F for k = 0 (full line); 0:5 fm�1 (dashed); kF (short �
dashed); and 2:1 fm�1 (dotted).
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Figure 4.14: The imaginary part of the self-consistent self-energy as a function of
!� "F for k = kF including S waves only (solid) and with all partial waves (dashed).
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4.4 Resulting Single-Particle Propagator

In Fig. 4.15, the self-consistent spectral functions including only S waves are shown

for k = f0:5 fm�1; kF ; 2:1 fm�1g. In the upper part of the �gure, the low-energy part

of the spectral functions are displayed. The momentum dependence of the quasi-

particle peaks is apparent, with the width of the peak vanishing for k = kF at the

corresponding qp energy. Near the Fermi energy, the background contribution on

both the hole and particle sides are enhanced near qp energies. The spectral function

at high energy, also displayed in the bottom part of the �gure on a logarithmic scale,

exhibits very little momentum dependence, as �rst shown in Ref. [40]. A surprising

momentum independence of the spectral function also arises at large negative ener-

gies in the self-consistent result. Such a tail is not obtained in spectral functions

calculated from the mean-�eld as a starting point.

Integrating the spectral functions up to the Fermi energy yields the momentum

distribution. In the top part of Fig. 4.16, the complete momentum distribution is

shown on a linear scale. The occupation for momenta less than the Fermi momentum

is about 4% higher than results that start with the mean-�eld [40], which agrees with

the notion that such a treatment overestimates correlation e�ects. The self-consistent

qp strength at the Fermi momentum is also higher by about 8%. In the bottom part of

Fig. 4.16, the high-momentum tail is plotted on a logarithmic scale. The exponential

decrease observed in results using the Paris potential [76] is con�rmed by the self-

consistent results presented here using the Reid potential.

The momentum distribution at high k originates from large negative energy con-

tributions. Figure 4.17 illustrates the momentum content for low energies, corre-

sponding to ! = f�425 ;�250;�125;�75 MeVg. A comparison with corresponding

results starting from the mean-�eld [41] shows that the k-dependence at low energy

is less pronounced with self-consistent results. This con�rms the previous observa-

tion, related to Fig. 4.15, that low-energy spectral functions have little momentum
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Figure 4.15: The spectral function, S(k; !) as a function of ! � "F , for sp momenta
k = 0 (solid); kF (dashed); and 2:1 fm�1(dotted).
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dependence, which originates from the inclusion in the self-consistent results of low-

energy states not reached in calculations starting with mean-�eld propagators. In the

mean-�eld case, there is a k-dependent threshold energy below which 2h1p excita-

tions do not occur. The spreading of the sp strength in the self-consistent calculation

leads to the corresponding spreading of these more complicated states, yielding less

k-dependence of these terms and the disappearance of the energy threshold.

For completeness, the resulting spectral functions are shown as a function of energy

and momentum in Fig. 4.18. The �gure can be compared with Figure 1 in Ref. [77]

representing spectral functions calculated from the mean-�eld. In this type of plot,

di�erences are di�cult to distinguish. The general features of the spectral function

and the behavior of its peak are similar in both calculations.

The sp wave function in coordinate space can be obtained from a Fourier-Bessel

transform of the spectral function, as follows

S`(r; r
0; !) =

2

�

Z
dk k2 j`(kr) j`(kr

0)S(k; !) (4.2)

At �xed r0 = 0 for ` = 0, the resulting wave function at energy, ! = �58 MeV, is
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Figure 4.18: The momentum and energy dependence of the self-consistent sp spectral
function for in�nite nuclear matter at kF = 1:36 fm�1.

presented in Fig. 4.19. In this �gure, the wavefunction is multiplied by r, so that one

obtains a sin-wave for the mean-�eld case with a magnitude determined by the qp

strength. For energies near "F , correlated wave functions are similar to the mean-�eld

wave function, as the quasiparticle peak becomes a delta function at kF . However,

at low energy, wave functions do not resemble momentum eigenstates, but appear

more localized. This is due to two features of the low-energy spectral function as a

function of momentum. First, the quasiparticle peak is spread in momentum which

creates damping of the wave function with increasing r, leading to a mean-free path at

the corresponding energy. Second, the background is a smooth function sampling all

momenta, and this produces an enhancement at small r. The resulting wave function

appears localized in coordinate space, which is di�erent from the mean-�eld model

of these states. A similar localization is observed for natural orbits in 160 including

SRC [69].
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Figure 4.19: The sp wavefunction in coordinate space for an energy of �58 MeV
(solid) as compared to the mean-�eld case (dashed).

4.5 Saturation Properties

The momentum distribution at high k is due to contributions at large negative energy,

as illustrated in Fig. 4.17. These contributions are therefore also an important source

of binding in the present calculation and re�ect the in�uence of SRC. Referring to

Table 4.1, the energy expectation values for self-consistent results at kF = 1:36 fm�1

are determined including all the partial waves on top of a self-consistent S-wave

calculation as discussed in Section 4.1. In this case, the relevant energies are

E=A = �14:76 MeV

PE=A = �68:67 MeV

KE=A = 53:91 MeV:

The kinetic energy can be compared with the results of Vonderfecht [40]. The self-

consistent calculation yields about 7:5 MeV more kinetic energy.

In Table 4.2, self-consistent results for a higher density corresponding to kF =

1:45 fm�1 are displayed. The �rst four lines contain results for the last iterations
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iteration "F E/A KE/A PE/A �(fm�3)

4 -7.25 -9.10 60.19 -69.29 .203
5 -7.03 -8.80 60.96 -69.77 .203
6 -3.56 -7.88 60.01 -67.89 .202

7 S waves -2.36 -7.18 60.07 -67.25 .203
all waves -4.64 -12.30 67.83 -80.13 .207

average result -7.32 -10.78 63.14 -73.92 .204

Table 4.2: The Fermi energy, energy per particle, kinetic energy, potential energy and
particle density calculated for the last four iterations at kF = 1:45 fm�1.

including only S waves. The next line includes the calculation of the higher waves on

top of the self-consistent S wave solution. Finally, the last line contains an approx-

imation to the complete self-consistent result including all waves with an averaging

procedure discussed in Section 4.1 for kF = 1:36 fm�1. As in Table 4.1, the particle

numbers calculated for the self-consistent results agree with the exact particle number

corresponding to 0:169 fm�3 for kF = 1:36 fm�1 and 0:204 fm�3 for kF = 1:45 fm�1.

This result is expected for any self-consistent solution as �rst shown in Ref. [60]. The

results of this study have better than 1% agreement with this condition, suggesting

satisfactory numerical accuracy of the present calculation.

The present results including only S waves have an uncertainty between iterations

of about 1 MeV in kinetic and potential energies. Because the changes in these values

tend to cancel almost completely, one may expect the resulting binding energy to

have less uncertainty. The addition of higher waves on top of these self-consistent re-

sults can yield an estimate of the self-consistent solution including all waves but with

greater uncertainty. Including only S waves, the energy per particle at kF = 1:45 fm�1

is about 4:0MeV higher than that obtained for the empirical saturation density. This

result indicates that the saturation density of a self-consistent calculation must be

near the empirical value since results at lower density are mostly in agreement. Fur-

thermore, the value of the binding energy at the saturation density is expected to

be about 15 MeV based on the results of Table 4.1. Both the saturation density and

binding energy appear therefore consistent with empirical saturation properties. This
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kF = 1:36 fm�1 and kF = 1:45 fm�1. The saturation density calculated in the SCGF
scheme with the Reid potential will occur at kF < 1:45 fm�1, possibly in agreement
with empirical saturation properties.

is illustrated in Fig. 4.20, where the two points represent the self-consistent values

of the energy per particle presented in Table 4.1 and Table 4.2 including an aver-

age treatment of the higher partial waves. The error bars represent the uncertainty

resulting from this inclusion and are determined by the di�erence between the last

two lines in these tables. The box in the �gure represents the possible values of the

empirical saturation properties.

The increase in kinetic energy present for the higher density system is substantially

greater than that expected for the Fermi gas [68]. This increase must be due to

SRC, and to study this e�ect one may consider high-momentum contributions to the

binding energy. In Fig. (4.21) the contribution to the binding energy as a function

of sp momentum is plotted for the densities corresponding to kF = 1:36 fm�1and

kF = 1:45 fm�1. This �gure illustrates that this increase in the kinetic energy due

to high-momentum components cancels the potential energy between 3 and 5 fm�1
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for kF = 1:45 fm�1. For the empirical saturation density, these momenta contribute

substantially to binding. The loss of these high momentum terms in the energy per

particle corresponds to the decrease in binding. This appears to be the mechanism

by which the SRC provides saturation.

These results draw a di�erent conclusion about saturation from that of previous

work including three hole-line contributions in the BBG method. The saturation

properties calculated with such a method [21] correspond to kF = 1:565 fm�1 and

E=A = �16:18 MeV suggesting the need for three-body forces to explain saturation.

The present work focuses on the inclusion of SRC self-consistently, including the

full energy-dependence of the nucleon propagator in the medium. This calculation

does not include contributions from long-range correlations, whereas the three hole-

line calculations of Ref. [21] include the third-order ring diagram. Ring-diagram

contributions provide increasing attraction as a function of density [23], resulting in

increased binding energy and therefore higher saturation density. The relevance of
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such terms to �nite nuclei has been questioned in Ref. [78]. Since in�nite nuclear

matter has been constructed to represent the interior of heavy nuclei, it is useful to

note that long-range correlations can have only little e�ect on the value of the central

density. The measured charge density at the origin for 208Pb is dominated by 1s, 2s,

and 3s proton shells. The depletion of the 1s and 2s must originate from SRC, while

the 3s may be marginally a�ected by long-range correlations. One must therefore be

able to explain saturation of heavy nuclei by including only SRC. It appears that the

present scheme con�rms these observations and may produce saturation properties in

agreement with empirical values.
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Chapter 5

Finite-Temperature Formalism

An introduction to a treatment which includes SRC self-consistently in the sp prop-

agator of in�nite nuclear matter at �nite temperature, is presented in this chapter.

More detailed discussions of the basic formalism can be found in Refs. [50],[52]-

[54],[79], and [82]. Section 5.1 provides some background information about many-

body systems at �nite temperature. In Section 5.2, the case of the Green's function in

a many-body setting is studied. The derivation of a similar diagrammatic expansion

to the zero-temperature case is sketched in Section 5.3, and its implementation for

the present study is developed in Section 5.4.

5.1 Background

At �nite temperature, a system will be statistically distributed over all possible states,

and a ground state expectation value is replaced by an average over the expectation

values of an ensemble of states weighted by a statistical operator. To study such an

ensemble average, we will choose the grand canonical distribution, characterized by

the density operator,

�̂ = e��(Ĥ�N̂�); (5.1)

where � = 1
kT

and � is the chemical potential of the many-body system.

To determine the properties of a many-body system of interacting particles, we

will use the Hamiltonian from Eq. (2.21) so

Ĥ j 	N
n i = En j 	N

n i (5.2)
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and

N̂ j 	N
n i =

X
k

aykak j 	N
n i = N j 	N

n i; (5.3)

where k includes spin and isospin quantities. The probability of the system being

in state j 	N
n i, with energy En and N particles, is determined by the corresponding

expectation value of the grand distribution operator and the grand partition function.

Whereas in the zero-temperature case, expectation values of operators were evaluated

with respect to the ground state with �xed N , any expectation value calculated at

�nite-temperature will now be calculated over the entire ensemble of all many-body

states in the following way,

hÔi = 1

Z

X
nN

e��(En��N)h	N
n j Ô j 	N

n i (5.4)

using

Z =
X
nN

e��(En��N); (5.5)

where Z is the aforementioned grand partition function. One may rewrite the sum

over states for the ensemble average in the following way,

hÔi = tr(�̂Ô)

tr(�̂)
; (5.6)

which can be evaluated in any basis. This illustrates that the density matrix yields any

relevant ensemble average and completely determines the properties of the system.

5.2 Finite-Temperature Green's Functions

The sp propagator at �nite temperature is de�ned by

gT (k; k0; t� t0) = �ihT [ak(t)ayk(t0)]i; (5.7)

where the �eld operators are Heisenberg operators with time evolution governed by

Ĥ. Rewriting the propagator in the basis of good particle number and energy, one

obtains

gT (k; k0; t� t0) = �iX
n

e��(En��N)
D
	N
n

���T [ak(t)ayk0(t0)]
���	N

n

E
: (5.8)
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To determine the dynamics of the system, one would like to be able to expand in

a perturbation series for gT , as was done for zero temperature. This is not possible

with the above form. The diagrammatic expansion for g, and therefore its analysis

by partial summation, stemmed from the di�erential form of the propagator as a

solution to the Schr�odinger wave equation. One may regard the density operator as

governing propagation in imaginary time. Thus, it is useful to consider imaginary

times, � = it, where t is real. The distribution operator, then, is a time evolution

operator in imaginary time of �� = ��. Solving for the properties of the system

comes down to being able to evolve a state in imaginary time by ��. We will see

that herein lies the key to solving for the sp propagator at �nite temperature using

the same tools as at zero temperature.

Applying this idea, one may consider the sp propagator of nuclear matter, for

which k = k0, for � > 0,

g<(k; �) = � 1

Z

X
i

h	ij�̂ayk(�)ak(0)j	ii

= � 1

Z

X
i

h	ije��(Ĥ��N̂)e�(Ĥ��N̂)ayke
��(Ĥ��N̂)akj	ii

= � 1

Z

X
ij

e(��+�)(Ei��Ni)h	ijaykj	jie��(Ej��Nj)h	jjakj	ii; (5.9)

where Heisenberg �eld operators are evolved in imaginary time and i includes both

particle number and energy. Since the energies in the exponents can be arbitrarily

large, in order for the sum to converge each term must be �nite, and the exponents

must be negative in the case of large energies. From the �rst factor, this means that

� < �, and from the second exponential factor one obtains � > 0. Likewise, for the

� < 0 case,

g>(k; �) = � 1

Z

X
ij

e(����)(Ei��Ni)h	ijakj	jie�(Ej��Nj)h	jjaykj	ii (5.10)

convergence conditions can be found to be �� < � < 0. The complete propagator

gT consists of the di�erence of g< and g>. In considering the imaginary-time Green's
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function of the noninteracting system one obtains

gT0 (k; �2 � �1) = ihT [ak(�2)ayk(�1)]i
= i[hak(�2)ayk(�1)i � hayk(�1)ak(�2)i]
= i[�(�2 � �1)

1

1 + e��("(k)��)

� �(�1 � �2)
1

1 + e�("(k)��)
]e("(k)��)(�2��1): (5.11)

In this expression, the operators are time-evolved with Ĥ0 and the time-ordering op-

erator is extended for imaginary times. The ensemble average of the density operator

(the number of particles in state k) and the corresponding partition function can be

evaluated explicitly, yielding the Fermi distribution functions in the expression above.

Notice that for all momenta, both terms will contribute due to the nonzero value of

the statistical factors for all k, and it is therefore possible to have both hole and

particle contributions at the same momentum and corresponding energy. The value

�2 � �1 is restricted to the (��; �) interval in which gT is guaranteed to converge.

Since the propagation depends only on the imaginary-time di�erence, one can choose

to evolve the state from 0 to � . Recalling that tr[AB] = tr[BA], the Green's function

can be expressed in the following equivalent forms, dropping the superscript T ,

g(k; �) =
1

Z
tr[�ayk(�)ak(0)]

=
1

Z
tr[ak(0)�a

y
k(�)]

=
1

Z
tr[ak(0)a

y
k(� � �)�]

= g(k; � � �)

= �g(k; � � �): (5.12)

This shows that the Kubo-Martin-Schwinger [59],[83] relation is obeyed,

g(k; �) = �g(k; � � �): (5.13)

Restricting � to the (��; �) interval, as is required to de�ne time ordering of imaginary

times, causes trouble when transforming to (k; !) space, since the Fourier transform
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requires an integral over all time. While the Green's function is only de�ned on this in-

terval, it can be extended beyond this boundary in accordance with the quasiperiodic

boundary condition that the KMS relation allows. The Fourier transform therefore

becomes a Fourier series, where

g(k; i!n) =
1

2

Z �

��
d�ei!n�g(k; �): (5.14)

The resulting Green's function has quantized values of !n which are known as the

Matsubara frequencies [?]:

!n =
�

�
n (5.15)

where n is odd for the case of fermions.

As the Lehmann representation was useful in the zero-temperature case, we may

now be interested in deriving a corresponding representation of g(k; !n) �rst obtained

by Landau [?]. Inserting Eq. (5.7) in Eq. (5.14), one obtains

g(k; i!n) =
1

2

Z 0

��
d�e�i!n� hayk(�)ak(0)i �

1

2

Z �

0
d�ei!n� hak(�)ayk(0)i: (5.16)

Inserting complete sets of many-body states chosen as eigenvectors of the density

operator and restoring the particle-number and energy representation, fjEn; Nig =

fj	N
n ig, one obtains the following result:

hak(�)ayk(0)i =
1

Z
trf�ak(�)ayk(0)g

=
1

Z

X
m;N

h	N
n je��(H��N)e�(H��N)ake

��(H��N)aykj	N
n i

=
1

Z

X
m;n;N

h	N
n jakj	N+1

n ih	N+1
n jaykj	N

n ie��(Em��N)e�(Em�En+�)

(5.17)

Using such expressions in g(k; �), Fourier transformation yields a useful representation

of the g(k; i!n) with the same spectral information as Eq. (2.7), with the notable

exception that it is restricted to describing imaginary times and frequencies:

g(k; i!n) =
1

Z

X
m;n;N

e��(E
N
m��N)f jh	N+1

n jaykj	N
mij2

i!n � EN+1
n + EN

m + �
+

jh	N�1
n jakj	N

mij2
i!n � EN

m + EN�1
n + �

g:
(5.18)

76



A �nite-temperature spectral function can be de�ned as follows,

S(k; !) =
X
nmN

h	N�1
m jaykj	N

n ih	N
n jakj	N�1

m iÆ(En � Em � �� !): (5.19)

De�ning the distribution function,

f(!) =
1

1 + e�(!��)
; (5.20)

one can express Eq. (5.18) using (5.19) and (5.20), producing the following form,

g(k; i!n) =
Z
d!0S(k; !0)f f(!0)

i!n � !0
+

1� f(!0)

i!n � !0
g: (5.21)

With this form, g> and g< are expressed as follows,

Im g>(k; !) = (1� f(!))S(k; !) (5.22)

Im g<(k; !) = f(!)S(k; !): (5.23)

Using these expressions, the imaginary-energy propagator obeys

g(k; i!n) =
Z
d!0

Im g(k; !0)

i!n � !0
: (5.24)

While dealing with imaginary time is sensible for the purpose of calculating the density

matrix and partition function, one must discuss issues like the sp excitation spectrum

in terms of real energies. To lift the imaginary-time/imaginary-energy restriction, it

is fruitful to consider the analytic continuation i!n ! !, where ! includes all complex

values. This step yields the Landau representation of the �nite temperature Green's

function [?]:

g(k; !) =
Z
d!0S(k; !0)f f(!0)

! � !0 � i�
+

1� f(!0)

! � !0 + i�
g (5.25)

The new g(k; !) is clearly identical to the old one at its in�nite set of de�ned points

along the imaginary-! axis, fi!ng. Carlemann's theorem [84] asserts that there is

only one function which can be identical to Eq. (5.18) at its de�ned points, fi!ng,
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analytic everywhere with the possible exception of the real axis, and tending to zero at

in�nite distance from the origin. The new function g(k; !), Eq. (5.25), will therefore

have these properties. If we determine g(k; i!n) from diagrammatical methods, we

can obtain the propagator for real times and energies with the spectral function

common to both Eq. (5.21) and Eq. (5.25). The resulting g(k; !) has a branch

cut at the real axis with the discontinuity g>(k; !) � g<(k; !) = S(k; !). We can

also note that g(k; !) can be Fourier transformed to �nd real-time Green's functions.

Therefore, real-time evolution and real-energy excitations can be explored by solving

for imaginary-time evolution.

5.3 Finite-Temperature Dynamics

In order to illustrate the value of the imaginary-time propagator in �nite-temperature

Green's function theory, one should recall the form of the density operator. Di�eren-

tiating Eq. (5.1) with respect to �, yields the Bloch equation [85],

@�̂(�)

@�
= �(Ĥ � �N̂)�̂(�): (5.26)

Just as the Schr�odinger wave equation determines the time evolution of a wave func-

tion, the Bloch equation determines evolution of the system in imaginary time. The

Bloch equation is in a form that can be analyzed at �nite temperature in the same

way as the Schr�odinger wave equation in the zero-temperature case.

We de�ne the operator eU(�) such that

�̂(�) = e��(Ĥ0��N̂) eU(�): (5.27)

The imaginary-time evolution operator in the interaction picture obeys the following

di�erential equation
@ eU (�)
@�

= �Ĥ1(�) eU(�); (5.28)

which makes it particularly suitable for iterative solution. This introduces a �nite-

temperature analog to the interaction picture. Operators in this picture will be
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evolved in imaginary time with the noninteracting Hamiltonian. The correspond-

ing Ĥ1(�) can then be de�ned by

Ĥ1(�) = e(Ĥ0��N̂)�Ĥ1e
�(Ĥ0��N̂)� : (5.29)

Integrating the di�erential equation, Eq. (5.28) yields

eU(�) = 1�
Z �

0
dt1Ĥ1(�1) eU(�1)

= 1�
Z �

0
d�1Ĥ1(�1) +

Z �

0
d�1

Z �1

0
d�2Ĥ1(�1)Ĥ1(�2)� � � �

=
1X
n=0

(�1)n
n!

Z �

0
d�1 � � �

Z �

0
d�nT [Ĥ1(�1) � � � Ĥ1(�n)] (5.30)

This illustrates that the imaginary-time evolution in the interaction picture can be

evaluated using Dyson's expansion, in analogy to the zero-temperature case. Substi-

tuting the second-quantized Hamiltonian into this expression and taking the ensemble

average [52] yields a sum that can be treated diagrammatically. This diagrammatic

expansion consists of interactions connected by all possible contracted �eld operators,

or imaginary-time Green's functions, which is expressed diagrammatically as in the

zero-temperature case by Fig. 2.1.

Using a similar argument as in the zero-temperature case, one expects the in�nite

sum of ladder diagrams to be the relevant set of diagrams to consider in the e�ective

interaction. Therefore, the same diagrams will be considered in the �nite-temperature

case as in the zero-temperature case. As a result, we can explore a similar self-

consistency scheme between the ladder equation for the e�ective interaction and the

Dyson equation for the sp propagator as at zero-temperature. A new dictionary

will not be required for analyzing the diagrams, but the new character of g0(k; i!n)

including Fermi distributions and omitting the Fermi energy restriction of hole and

particle propagation, will alter the analytic expression of the corresponding terms.

The physical interpretation of the results is also somewhat di�erent from the zero-

temperature case. Considering the propagator along the imaginary time or energy

axis only, the solution to the self-consistent scheme yields the one-body density matrix

79



at the chosen temperature. The partition function at this level of approximation is

also obtained, and therefore all bulk and thermodynamic properties of the system in

thermal equilibrium can be determined. Since the imaginary time propagator of the

system can be analytically continued to the real axis, one is able to obtain similar

information as in the zero-temperature case, such as the sp excitation spectrum and

spectral functions. For the �nite-temperature case, self-consistency of the sp Green's

function will be the goal of the iteration scheme as in the zero-temperature case.

Since Dyson's equation has a similar diagrammatic expansion as in the T = 0

case, one obtains

g(k; i!n) = g0(k; i!n) + g0(k; i!n)�(k; i!n)g(k; i!n)

=
1

g0(k; i!n)�1 � �(k; i!n)

=
1

i!n � �(k) + �� �(k; i!n)
(5.31)

as a means of determining the imaginary-time propagator in terms of an imaginary-

energy self-energy. Therefore, �nding the e�ective potential, or self-energy, from

diagrammatic methods will yield the corresponding sp Green's function.

Although Dyson's equation, Eq. (5.31), and the self-energy are only de�ned for

fi!ng, �(k; i!n) can be analytically continued to all complex ! because it also has

a Landau representation just like the propagator, Eq. (5.25). Likewise, a similar

analytic continuation for 2p energies exists for the e�ective interaction, �. While the

solution along the imaginary axis is the key to using the diagrammatic methods for

these studied quantities, we will no longer use the discrete Matsubara energies in their

evaluation, but instead we employ continuous real energies.

5.4 Self-Consistent Solution at Finite-Temperature

We will brie�y repeat the steps in the iteration scheme needed to solve for the self-

consistent Greens' function at �nite temperature, which was presented for the zero-

temperature case in Section 2.5.
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1. The e�ective interaction will again be solved in a partial-wave expansion just

as in the zero-temperature case (See Fig. 2.5):

hkrj�JSTLL0 (P;
)jk0ri = hkrjV JST
LL0 jk0ri

+
1

2

1

(2�)3
X
L00

Z
dq q2hkrjV JST

LL00 jqigIIf;T (q; P;
)hqj�JSTL00L0(P;
)jk0ri;

(5.32)

where the dressed but noninteracting 2p propagator at �nite temperature, gIIf;T ; is

given by

gIIf;T (q; P;
) =
1

2�
h
Z
d! g(

�!
P +�!q ; 


2
+ !)g(

�!
P ��!q ; 


2
� !)i�

= h
Z
d!

Z
d!0 (1� f(!)� f(!0))

S(
�!
P +�!q ; !)S(�!P ��!q ; !0)

! + !0 � 

i�:
(5.33)

To obtain the �nal equality, a Matsubara summation must be performed as discussed

in Appendix A of Ref. [86]. Note that the angle averaging represented by the notation,

h i�, is required for the use of the partial-wave basis, just as in the zero-temperature

case.

2. The diagonal elements of the e�ective interaction are used to calculate the

imaginary part of the self-energy at �nite temperature (See Fig. 2.6):

Im �(k; !) =
1

(2�)4

Z
d3q

Z
d!0 S(q; !0)[f(!0) + g(! + !0)] Im hk; qj�(P;
)jk; qi:

(5.34)

The two statistical factors, f and g, arise from a partial fractions treatment of the

energy denominators in order to perform the Matsubara sum as presented in Appendix

A of Ref. [86]. The factor f corresponds to the Fermi statistical function, de�ned in

Eq. (5.20), and the factor g represents the Bose statistical function of a 2p energy,

where the boson distribution function is

g(
) =
1

e�(
�2�) � 1
: (5.35)
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The structure of the Bose function includes a pole at twice the chemical potential

which is canceled by a corresponding numerator in the e�ective interaction [47].

3. Finally, the form of the sp propagator, after the appropriate analytic continu-

ation, is unchanged from the zero-temperature case (See Fig. 2.7):

g(k; !) = g0(k; !) + g0(k; !)�(k; !)g(k; !) (5.36)

=
1

! � k2

2m
� �(k; !)

(5.37)

The start of the iteration process requires a sp propagator ansatz. As a �rst choice,

we will study a temperature of 5 MeV. Considering the self-energies presented in Ref.

[86], it appears that the zero-temperature solution at normal density may be a good

starting point of the iteration scheme. At this temperature, we will see in Chapter 6

that the �nite-temperature e�ects are mild but noteworthy.
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Chapter 6

Results and Applications at Finite Temperature

Finite-temperature calculations of the self-energy have been performed by several

groups [86],[87]-[91], and [64] with the goal of gaining insight into heavy ion-collision

experiments which sample a large range of temperatures and densities. These theo-

retical studies explore the equilibrium properties of �nite-temperature nuclear matter

while Ref. [91] includes nonequilibrium e�ects by applying transport methods in

the Boltzmann-Uehling-Uhlenbeck scheme. Again, the need to go beyond the mean-

�eld description is motivated by electron scattering experiments for the low temper-

ature limit near saturation density. Quasiparticle properties at saturation density

display a strong temperature dependence [90]. A Brueckner study in nuclear matter

at T = 10 MeV [88] �nds an increase in qp energy spectrum and an expected addi-

tional depletion of the momentum distribution below the Fermi momentum. Also, a

general decrease in the e�ect of SRC is observed with respect to the zero-temperature

case corresponding to the reduced e�ect of the Pauli principle at �nite temperature.

An attempt to solve for the characteristics of nuclear matter at �nite temperature

self-consistently is presented in Ref. [64] for a semi-realistic separable interaction. At

lower density, the e�ect of pairing correlations must be included in calculations using

Green's function methods [91].

For a noninteracting Fermi gas of nucleons �nite temperature e�ects are going to

dominate above the Fermi temperature, given by

�h2k2F
2m

= kBTF : (6.1)

At normal density this corresponds to a Fermi temperature of TF = 4:3 � 1011K, or
37 MeV. Accordingly, an atomic nucleus may be approximated as a highly degenerate
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Fermi gas with a temperature small compared to the Fermi temperature. Finite-

temperature e�ects must be considered if one is interested in nuclei in hot plasmas

and inside stars. In this study, a temperature of 5 MeV is chosen to study self-

consistency aspects of sp properties. This temperature is su�ciently far from the

Fermi temperature that quantum e�ects are still relevant.

In this chapter, the results of the SCGF iteration are presented for kF = 1:36 fm�1

at T = 5 MeV. The starting point for this self-consistent calculation is provided by

the results of Vonderfecht using mean-�eld propagators [40] as in the zero-temperature

case. Section 6.1 will illustrate the convergence of important single-particle properties,

and the following sections will contain converged results for the e�ective interaction

(Section 6.2), the self-energy (Section 6.3), and the sp spectral function (Section 6.4).

6.1 Self-Consistency at Finite Temperature

This section illustrates the convergence properties of the self-energy parameters and

related quantities. Figure (6.1) contains the peak values of G2 and G3 for various

iteration steps. These gaussians describe the imaginary part of the self-energy in the

particle and hole domain near � (See Section 3.1 for the zero-temperature equivalent).

The convergence was not pursued as far as in the zero-temperature study, but the

extension to a more complete self-consistency is straightforward. It will be seen that

not all parameters di�er greatly from the zero-temperature case. The high energy

peak for instance is not noticeably altered (See Section 6.3).

The sign of the peak values shown in Fig. 6.1 of the representative gaussians is

altered with respect to the zero-temperature case for ! > �. The �nite-temperature

Im � is positive at all energies because �nite-temperature methods are implemented

using only forward going propagation in the e�ective interaction using the Baym-

Kadano� boundary condition [53]. At zero temperature, 2h propagation is treated as

two particles propagating backward in time in the Galitskii-Feynman approach. The

only time-ordering necessary for a �nite-temperature study is the retarded case, and
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Figure 6.1: Parameters for the peak value of G2 (above) and G3 (below), which
describe the imaginary part of the self-energy near the chemical potential in the
particle and hole domains, respectively.
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the resulting imaginary part of the self-energy is positive everywhere [86].

The greatest di�erence between the zero- and �nite-temperature solution for Im �

is in the values of G2 and G3 shown in Fig. 6.1, which decrease by as much as 40%

with respect to the zero-temperature solution. This result can be compared with that

of the Rostock group using a mean-�eld starting point and calculating the e�ective

interaction with a separable version of the Paris potential [92]. While di�erences be-

tween the results of Ref. [92] and those of the present work exist due to the use of

di�erent potentials, the Rostock group also �nds a decrease of contributions to the

self-energy near the chemical potential with increasing temperature. As in Ref. [92],

we �nd that for energies greater than 600 MeV, the imaginary part of the self energy

has no substantial di�erence from the zero-temperature case. A notable di�erence

between the two sets of results occurs in the particle domain near the chemical poten-

tial. The Rostock group �nds that the contribution in this region forms a dramatic,

pole-like peak structure at low temperature. This temperature corresponds to the

critical temperature, Tc � 3 MeV, signalling the onset of super�uidity in this calcu-

lation. This structure is absent in the present results. This absence is no surprise

since such a pairing instability is not evident even at zero-temperature when dressed

propagators are used.

The particle density for the Fermi momentum considered is reproduced precisely

for all iterations. The particle density is given by

� =
4

(2�)3

Z
d3k

Z
d! S(k; !)f(!): (6.2)

This expression is used as a condition which is used to determine the chemical po-

tential, �, at �nite temperature. Therefore, satisfying particle number conservation

is not a measure of the level of self-consistency of the calculation.

The behavior for various iteration steps of the sp potential and the imaginary part

of the self-energy at the qp energy, are shown in Figs. 6.2 and 6.3. The sp potential

determines the qp spectrum, identifying the location of the peak of the spectral

function. This peak is determined in the same way as in the zero-temperature case,
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Figure 6.2: The single-particle potential as a function of momentum is shown for the
third iteration (solid), fourth iteration (dotted), and last iteration (dashed).

given by Eq. (3.5). Figure 6.2 illustrates the sp potential when all partial waves are

included in the calculation. This result can be compared with the �nal result in Fig.

4.5 at T = 0 and the same density. One observes that the di�erence between the

zero-temperature and �nite-temperature result are minor at this temperature. This

observation is also made in Ref. [86]. The imaginary part of the self-energy at the

qp energy, displayed in Fig. 6.3, is reduced with respect to the zero-temperature

case with the exception of momenta very near the Fermi momentum (k ' kF ). The

nonzero value of the on-shell value of the imaginary part of the self-energy, I(kF ), is

also of numerical importance. This implies that all spectral functions have a �nite

width and therefore can easily be represented numerically for all momenta.
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Figure 6.3: The on-shell value of Im �(k; !) as a function of momentum is shown for
the third iteration (solid), fourth iteration (dotted), and last iteration (dashed).

6.2 The E�ective Two-Body Interaction at T=5 MeV

The most notable di�erence for the e�ective interaction between the zero and the

�nite temperature case occurs at low center of mass momentum. For zero center of

mass momentum, there is no Pauli-blocking e�ect in the noninteracting 2p density

of states for the zero-temperature case. However, for �nite temperature, there is

always some statistical factor which a�ects the noninteracting 2p density of states

and, consequently, weakens the e�ective interaction. In Fig. 6.4, the noninteracting

2p density of states (�IIf;T ), as de�ned in Eq. (5.33), for zero center of mass momentum

is shown for temperatures of 0 and 5 MeV. The statistical factor responsible for the

vanishing of �IIf;T and Im � (shown in Fig.6.5) at 2� mimics the Pauli blocking of

the zero-temperature case for �nite total momenta. Consider the following form of

the 2p statistical factor near 2� in the case of zero center of mass momentum in the
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free-particle approximation:

1� f(!1 � �)� f(!2 � �) = 1� 1

1 + exp(!1��
T

)
� 1

1 + exp(!2��
T

)

/ k2F �mkBT � q2; (6.3)

in the limit of !1 ! � and !2 ! �. In obtaining this result, the �rst order in the

Taylor expansion of the exponential was retained, and the sp energies of q2

2m
, for the

free-particle case, were used. In the zero total momentum case, it is useful to note

that q corresponds to both the sp momentum and the relative momentum of the

particles. The source of the behavior near 2� is clear, since this is the region where

the preceding approximation is most valid. Recalling the well-known form [52] of the

Pauli factor

Q = k2F � (
K

2
)2 � q2 (6.4)

for K
2
< kF and kF � K

2
< q <

q
k2F � K2

4
, one sees that the statistical e�ect of

�nite-temperature on these 2p properties in the important case of zero center of mass
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momentum and 
 near 2� is similar to the Pauli blocking e�ect at zero temperature

and (K
2
)2 � mkBT . This e�ect contributes to the weakening of the imaginary part

of the e�ective interaction near 2�, as illustrated in Fig. 6.5. This �gure displays

the diagonal elements of the imaginary part of the resulting �nite temperature e�ec-

tive interaction for zero center of mass momentum. The �gure includes all partial

waves which results in a q-independent high-
 peak. This in turn is responsible for

the k-independent high-energy behavior of the self energy. The decrease in over-all

magnitude of the imaginary part of the e�ective interaction with respect to the zero-

temperature case at low energies will yield a corresponding decrease of the imaginary

part of the self-energy. This e�ect is illustrated in �g. 6.6. A direct comparison with

Fig. 4.12 of Im � would be trivial, since the quantity vanishes at 
 = 2� at �nite

temperature. For comparison, an energy is chosen far from 2� with respect to the

temperature. The general decrease in magnitude of the �nite temperature case is

apparent. The top part of Fig. 6.6 shows that the main part of the di�erence does

not occur in the S wave contribution. In the bottom half of the �gure, one notices

that after the inclusion of the higher waves, the general reduction becomes visible.

6.3 Self-Energy

The change to �nite temperature has a signi�cant overall e�ect on the imaginary part

of the self-energy. With increasing temperature, the imaginary part of the self-energy

is generally more washed-out than in the zero-temperature case, as documented in

Ref. [86]. This is evident in the non-zero value of the the imaginary part of the self-

energy at the chemical potential and the decrease in magnitude of the neighboring

low-energy peaks, shown in Fig. 6.7. This is a re�ection of the decrease in magnitude

of the imaginary part of the e�ective interaction documented in the previous section.

Even for a temperature of 5 MeV, the greater smoothness of the self-energy will

have important consequences for the sp spectral functions. For instance, we can
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consider the characteristics of the quasiparticle peak as determined from the self-

energy. The spectrum shown in Fig. 6.2 is little altered with respect to the zero-

temperature case. The general decrease in the imaginary part of the self-energy will

cause a corresponding decrease in the on-shell imaginary part (I), resulting in sharper

quasiparticle peaks. The increased smoothness of the imaginary part of the self-energy

will also result in less structure in Re �. Finally, the quasiparticle strength, z, related

to the derivative of the real part of the self-energy becomes closer to 1.

These considerations suggest that the e�ect of the interaction is somewhat less im-

portant at �nite temperatures. However, the spectral function contains a low-energy

tail which develops in the self-consistent solution similar to the zero-temperature case.

Again, the behavior of this tail at high momenta is a re�ection the e�ect of SRC, as

discussed in Chapter 4.
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6.4 Spectral Function

Using the self-energy discussed above, sp properties can most easily be illustrated

in the spectral function, which is shown for several sp momenta in Fig. 6.8. In the

top part of this �gure, the results near the chemical potential con�rm the intuitive

expectation that increasing the temperature will decrease the e�ect of the interaction

on the spectral function. For instance, comparing 6.7 with the zero-temperature

case, the decreased Im � near the chemical potential results in less spreading of

the qp peaks. This decreased width of the qp peaks does not include the Fermi

momentum, since the Im � is nonzero at the chemical potential, unlike the zero-

temperature case. The resulting propagator is therefore more mean-�eld-like, with

more sp strength located in a narrower peak. For example, for k = kF , z = 0:85 in the

�nite-temperature case as compared with 0:80 at zero temperature. Averaging over

the ensemble of states results in this change, since the statistical factor decreases the

non-interacting 2p density of states. This, in turn, leads to the decreased imaginary

part of the self-energy and decreased width of sp momentum states. The bottom

part of the �gure shows that the high-energy tail remains unaltered and shows no

momentum or temperature independence.

As shown in Fig. 6.9, the non-zero value of the imaginary part of the self-energy

at the chemical potential and its smoother behavior as a function of energy with

respect to the zero-temperature case generate a spectral function that can be well

described numerically for all momenta and energies. This implies that the value of the

spectral function at any energy and momentum can be found with great accuracy upon

interpolation. This contrasts with the zero-temperature case in which the spectral

function has divergent peaks for momenta near kF and sharp zeros at "F for all

momenta, making �nite-temperature calculations, even at T = 5 MeV, much less

numerically demanding than at T = 0.

Finally, the occupation of momentum states is presented in Fig. 6.10 for compar-

ison with the zero-temperature case (See Fig. 4.3) and with other �nite-temperature

94



1e-06

1e-05

0.0001

0.001

0.01

0.1

1

-200 -150 -100 -50 0 50 100 150 200

S
pe

ct
ra

l F
un

ct
io

n

Energy (MeV)

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

1 10 100 1000 10000 100000 1e+06 1e+07

S
pe

ct
ra

l F
un

ct
io

n

Energy (MeV)

Figure 6.8: Single-particle spectral functions as a function of !�� at low energy (top)
and high energy (bottom) for k = f0 (solid); 1:36 (dashed);2:1 fm�1 (short�dashed)g
for kF = 1:36 fm�1 and T = 5 MeV.

95



-600
-400

-200
0

200
400

600
Energy (MeV) 0

0.5
1

1.5
2

2.5

k (/fm)

1e-08
1e-07
1e-06
1e-05

0.0001
0.001

0.01
0.1

1

Spectral Function

Figure 6.9: Single-particle spectral function, S(k; !��). Shown for comparison with
zero-temperature case, Fig. 4.18.

96



work. The present result basically agrees with the results of Ref. [86], employing

a separable version of the Paris potential. Such a similarity was also observed by

Vonderfecht for the zero-temperature case [39]. This similarity is obtained despite

the fact that di�erent interactions are used which result in large di�erences at the

Hartree-Fock level.
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Chapter 7

Conclusions and Outlook

Experimental evidence from (e,e0p) reactions clearly documents that sp states in nuclei

exhibit fragmentation and partial occupation. To describe these results theoretically,

an extension of the sp description from the independent-particle model is required.

In most previous work, one describes this correlated sp strength distribution by cal-

culating e�ects of excitations on a sea of mean-�eld particles. The aim of this work

has been to use a Green's function many-body method to describe the propagation

of a nucleon in in�nite nuclear matter self-consistently including a realistic two-body

interaction.

The sp Green's function yields sp expectation values, including the kinetic energy,

and, in the case of a two-body interaction, the potential energy. Given a physi-

cally relevant approximation to the self-energy, the sp propagator must be solved

self-consistently. To study the in�uence of this self-consistency on nuclear satura-

tion, in�nite nuclear matter is chosen. A realistic NN interaction contains a strong

short-range repulsion, which is considered to be a primary source of the observed

fragmentation and depletion of sp strength. To include the e�ect of SRC, the Brueck-

ner ladder approximation must be applied to describe the e�ective interaction in the

medium. In all previous work, mean-�eld sp propagators have been employed to de-

scribe 2p propagation between successive interactions. In this work, correlated sp

propagators, including complete o�-shell energy-dependence, are used to solve the

ladder approximation, as �rst performed by Gearhart. In this thesis, for the �rst

time, self-consistency of the sp propagator has been achieved via successive solution

of the ladder equation and the corresponding Dyson equation at kF = 1:36 fm�1 and

1:45 fm�1, using the Reid soft-core interaction.
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Additionally, one can intuitively expect that a description of single-particle states

which includes the e�ects of SRC self-consistently may a�ect calculated sp properties.

The iteration to self-consistency is required to obtain the low-energy contributions

which arise at k > kF . These contributions di�er from those calculated from a mean-

�eld starting point and play a crucial role in saturation (See Chapter 4).

A goal of this thesis has been to compare self-consistent propagators including SRC

with their counterparts calculated from the mean-�eld approximation. To study the

e�ect of the self-consistent inclusion of SRCs on sp propagation, one can consider the

resulting spectral functions. In general, the structure of the self-consistent spectral

function is not drastically di�erent from one obtained with mean-�eld propagators.

The region exhibiting the greatest di�erence corresponds to low momentum and large

negative energy. The spectral function vanishes in this region when mean-�eld phase-

space considerations are included. In the self-consistent case, the spectral function in

this region forms a weakly k-dependent low energy tail, not unlike the high-energy

behavior which displays no momentum dependence. This result is a re�ection of

the coupling of the nucleon to 2h-1p states that are themselves spread in the self-

consistent treatment. This low-energy tail of the self-consistent spectral function is

also of crucial importance in determining the saturation properties. Di�erences in

the spectral function for the self-consistent and mean-�eld treatments in this region

are subtle but have an important in�uence on saturation properties. For this reason,

it is necessary to consider self-consistent propagators in calculating the e�ect of SRC

on saturation.

We have found that the impact of self-consistency of sp propagators is profound

for saturation properties. This project has resulted in a theoretical prediction of

nuclear saturation properties which do not lie on the Coester band and are moved

close to empirical values. This increased binding at lower density arises from the low-

energy tail resulting from multiple iteration of the propagator. These components

serve as an important source of binding for momenta as high as 5 fm�1. Therefore,

including the short-range NN interaction self-consistently, an accurate description of
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nuclear saturation properties can be attained including only two-body interaction

terms. The present result is not inconsistent with recent three hole-line calculations

if one is willing to exclude the contributions of long-range correlations. It has been

suggested in Chapter 4 that the long-range correlations determined in nuclear matter,

especially those including pion-exchange terms, may not be necessary to describe

atomic nuclei.

In order to study neutron matter, however, the ladder approximation may not pro-

vide a complete description since the e�ect of collective excitations is not included. A

practical method to include such diagrams self-consistently remains to be developed.

The next development for this project will be to extend self-consistency beyond

the S wave level. Including higher waves self-consistently requires some development

of the numerical treatment of the iteration scheme, but no change in the theoretical

formulation of the problem will be required. This extension is necessary before a �nal

statement about self-consistent results in nuclear matter and saturation can be made.

In applying self-consistent propagators to describe other properties which may be

compared with experiment, there are many important avenues to pursue:

1. Applying SCGF solutions as a function of density to be used in the calculation

hadron tensors used in conjunction with the local density approximation to describe

knockout experiments.

2. The study of two-body density matrices in interacting systems for use in calcu-

lating 2p expectation values, including inclusive scattering and exclusive cross-sections

for triple coincidence experiments.

3. An extension to di�erent potentials on the market. This extension should pose

little additional di�culty since the more modern potentials [93]-[97] have softer cores

than the Reid potential used in this work.

These calculations can be extended to determine thermodynamic characteristics

of nuclear matter with di�erent potentials. Utilizing the SCGF equations for various

temperatures, properties of hot nuclear matter due to SRC can be studied. These

results have application to transport studies of heavy ion collisions. Another topic of
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interest is the e�ect of treating SRC self-consistently on phase changes. Since dressed

propagators including the SRCs drastically alter the appearance of the super�uid

phase transition at saturation density [43], the presence and onset of the liquid-gas

phase transition may also be a�ected. Included in this thesis is the ground work

and a pilot calculation applying SCGF methodology in �nite-temperature nuclear

matter. This serves as a starting point for the study of the temperature and density

dependence of the sp SCGF spectral function.
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