QUANTUM MECHANICS I (523) PROBLEM SET 9 (hand in November 12)

33) For free-particle states on requires the normalization

$$\langle E\ell m | E'\ell'm' \rangle = \delta(E - E')\delta_{\ell,\ell'}\delta_{m,m'}.$$

The wave function can be written as the radial wave function times the appropriate spherical harmonic

$$\langle r\theta\phi|E\ell m\rangle = R_{E\ell}(r)Y_{\ell m}(\theta,\phi) = c_{E,\ell} \ j_{\ell}(kr)Y_{\ell m}(\theta,\phi),$$

where the spherical Bessel function provides the relevant solution for the radial part. Determine the normalization constant $c_{E,\ell}$ in more detail than what is done in the book.

34) A particle in a spherically symmetrical potential is known to be in an eigenstate of ℓ^2 and ℓ_z with eigenvalues $\hbar^2 \ell(\ell+1)$ and m, respectively. Prove that the following expectation values w.r.t this state are satisfied:

$$\langle \ell_x \rangle = \langle \ell_y \rangle = 0$$

and

$$\langle \ell_x^2 \rangle = \langle \ell_y^2 \rangle = \frac{\left[\ell(\ell+1)\hbar^2 - m^2\hbar^2\right]}{2}$$

Try to interpret this result.

35) Suppose a half-integer $\ell\text{-value, say }1/2,$ were allowed for orbital angular momentum. From

$$\ell_+ Y_{1/2,1/2}(\theta,\phi) = 0,$$

one may deduce

$$Y_{1/2,1/2}(\theta,\phi) \propto \exp{\{i\phi/2\}}\sqrt{\sin{\theta}}$$

Try to construct $Y_{1/2,-1/2}$ by

a) applying ℓ_{-} to $Y_{1/2,1/2}$ and

b) using

$$\ell_{-}Y_{1/2,-1/2}(\theta,\phi) = 0.$$

Show that these two procedures lead to contradictory results (lending support to the notion that half-integer ℓ -values are not possible).

36) Calculate the following commutation relations:

a)	$[\ell_i, x_j]$
b)	$[\ell_i,p_j]$
c)	$\left[p_i,\frac{1}{r}\right]$
d)	$\left[p_i, \frac{x_j}{r}\right]$
e)	$[(oldsymbol{\ell} imes oldsymbol{p})_i, p_j]$
f)	$\left[(\boldsymbol{\ell} imes \boldsymbol{p})_i, rac{1}{r} ight],$

where i and j correspond to x, y or z, as usual.