33) For free-particle states on requires the normalization

$$
\left\langle E \ell m \mid E^{\prime} \ell^{\prime} m^{\prime}\right\rangle=\delta\left(E-E^{\prime}\right) \delta_{\ell, \ell^{\prime}} \delta_{m, m^{\prime}}
$$

The wave function can be written as the radial wave function times the appropriate spherical harmonic

$$
\langle r \theta \phi \mid E \ell m\rangle=R_{E \ell}(r) Y_{\ell m}(\theta, \phi)=c_{E, \ell} j_{\ell}(k r) Y_{\ell m}(\theta, \phi)
$$

where the spherical Bessel function provides the relevant solution for the radial part. Determine the normalization constant $c_{E, \ell}$ in more detail than what is done in the book.
34) A particle in a spherically symmetrical potential is known to be in an eigenstate of $\boldsymbol{\ell}^{2}$ and ℓ_{z} with eigenvalues $\hbar^{2} \ell(\ell+1)$ and m, respectively. Prove that the following expectation values w.r.t this state are satisfied:

$$
\left\langle\ell_{x}\right\rangle=\left\langle\ell_{y}\right\rangle=0
$$

and

$$
\left\langle\ell_{x}^{2}\right\rangle=\left\langle\ell_{y}^{2}\right\rangle=\frac{\left[\ell(\ell+1) \hbar^{2}-m^{2} \hbar^{2}\right]}{2}
$$

Try to interpret this result.
35) Suppose a half-integer ℓ-value, say $1 / 2$, were allowed for orbital angular momentum. From

$$
\ell_{+} Y_{1 / 2,1 / 2}(\theta, \phi)=0,
$$

one may deduce

$$
Y_{1 / 2,1 / 2}(\theta, \phi) \propto \exp \{i \phi / 2\} \sqrt{\sin \theta}
$$

Try to construct $Y_{1 / 2,-1 / 2}$ by
a) applying ℓ_{-}to $Y_{1 / 2,1 / 2}$ and
b) using

$$
\ell_{-} Y_{1 / 2,-1 / 2}(\theta, \phi)=0 .
$$

Show that these two procedures lead to contradictory results (lending support to the notion that half-integer ℓ-values are not possible).
36) Calculate the following commutation relations:
a)

$$
\left[\ell_{i}, x_{j}\right]
$$

b)

$$
\left[\ell_{i}, p_{j}\right]
$$

c)

$$
\left[p_{i}, \frac{1}{r}\right]
$$

d)

$$
\left[p_{i}, \frac{x_{j}}{r}\right]
$$

e)

$$
\left[(\boldsymbol{\ell} \times \boldsymbol{p})_{i}, p_{j}\right]
$$

f)

$$
\left[(\boldsymbol{\ell} \times \boldsymbol{p})_{i}, \frac{1}{r}\right],
$$

where i and j correspond to x, y or z, as usual.

