QUANTUM MECHANICS II (524)
PROBLEM SET 8 (hand in as soon as possible)
26) (40 points)

Write a computer program that solves the differential equation for the radial wave function at positive energy for a spherical potential. Include in the program the determination of the phase shift δ_{ℓ} (outside the range of this potential) for both $\ell=0$ and 1 . Plot both phase shifts as a function of energy in a suitable energy range. Calculate the differential cross section (and plot it) for a couple of energies which are low enough so that the $\ell=0$ and 1 contributions dominate the cross section (potential in a) also has contributions from $\ell=2$ at low energy but forget about these). Also, determine the total cross section and plot it as a function of energy. Choose one of the following three potentials:
a)

$$
V(r)=\frac{V_{0}}{1+e^{\left(r-R_{0}\right) / a}},
$$

where $V_{0}=-51 \mathrm{MeV}, R_{0}=r_{0} A^{1 / 3}, r_{0}=1.27 \mathrm{fm}, a=0.67 \mathrm{fm}$ and $A=16$.
This potential is adequate for the scattering of a nucleon from the nucleus ${ }^{16} \mathrm{O}$. So the relevant mass is $m c^{2}=939 \mathrm{MeV}$ and the relevant energy scale is in MeV .
b)

$$
V(r)=4 \epsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right]
$$

where $\sigma=2.556 \AA, \epsilon=10.22 \mathrm{~K}$ (Kelvin), and the interaction is a reasonable description of the ${ }^{4} \mathrm{He}-{ }^{4} \mathrm{He}$ atom-atom interaction. So the mass is the mass of the ${ }^{4} \mathrm{He}$ atom. Energy scale is in K.
c)

$$
V(r)=-h \frac{e^{-x}}{x}-1650.6 \frac{e^{-4 x}}{x}+6484.2 \frac{e^{-7 x}}{x}
$$

where $h=10.463 \mathrm{MeV}$ (also the unit for the other terms), $x=\mu r$, $\mu=0.7 \mathrm{fm}^{-1}$, and $\hbar^{2} / m=41.47 \mathrm{MeV} \mathrm{fm}{ }^{2}$. This interaction describes the strong part of the proton-proton interaction.

Note that for the last two interactions you have to deal with the relevant reduced mass of the problem.

