QUANTUM MECHANICS II (524)

PROBLEM SET 5 (hand in February 20)
14) (30 pts) Consider a system with $j=1$.
a) Write

$$
\left\langle j=1, m^{\prime}\right| J_{y}|j=1, m\rangle
$$

in 3×3 matrix form.
b) Show that it is legitimate to replace $e^{-i J_{y} \beta / \hbar}$ by

$$
1-i\left(\frac{J_{y}}{\hbar}\right) \sin \beta-\left(\frac{J_{y}}{\hbar}\right)^{2}(1-\cos \beta) .
$$

c) Use b) to determine the matrix elements of $\mathcal{D}_{m, m^{\prime}}^{j=1}(\alpha, \beta, \gamma)$.
d) Use the Kronecker product involving two rotation matrices $\left[\mathcal{D}_{m_{s}, m_{s}^{\prime}}^{j=1 / 2}(\alpha, \beta, \gamma)\right]_{i}(i=1,2)$ representing rotation matrix elements for two spin- $1 / 2$ objects to arrive at the same result as in c).
15) (10 pts) Construct a spherical tensor of rank 1 out of two different vector operators $\boldsymbol{F}=\left(F_{x}, F_{y}, F_{z}\right)$ and $\boldsymbol{G}=\left(G_{x}, G_{y}, G_{z}\right)$. Write the components of the resulting tensor $T_{\kappa}^{(1)}$ in terms of the x, y, and z-components of \boldsymbol{F} and \boldsymbol{G}.

