QUANTUM MECHANICS II (524)
PROBLEM SET 3 (hand in February 6)
7) (10 pts) A quantum state represented by $|\Psi\rangle$ is known to be a simultaneous eigenket of the Hermitian operators A and B which anticommute,

$$
A B+B A=0
$$

What can you say about the eigenvalues of A and B for the state $|\Psi\rangle$? Illustrate your point using the parity operator Π and the momentum operator p.
8) (20 pts) Consider a spin $1 / 2$ particle bound in a spherically symmetric potential well (like for hydrogen or the 3-D oscillator). Define spin-angular functions in two-component form as follows

$$
\mathcal{Y}_{\ell}^{j=\ell \pm 1 / 2, m}= \pm \sqrt{\frac{l \pm m+1 / 2}{2 \ell+1}} Y_{\ell, m-1 / 2}(\theta, \phi) \chi_{+}+\sqrt{\frac{l \mp m+1 / 2}{2 \ell+1}} Y_{\ell, m+1 / 2}(\theta, \phi) \chi_{-},
$$

where $\chi_{ \pm}$describe spinors with spin up and down, respectively. Note that the spin-angular functions are simultaneous eigenfunctions of $\boldsymbol{S}^{2}, \boldsymbol{L}^{2}, \boldsymbol{J}^{2}$ and J_{z}, since the linear combinations above involve the appropriate Clebsch-Gordan coefficients to couple orbital angular momentum and spin to total angular momentum (and its projection).
a) Write out (in as simple a form as possible) the spin-angular function $\mathcal{Y}_{\ell=0}^{j=1 / 2, m=1 / 2}$.
b) Express $(\boldsymbol{\sigma} \cdot \boldsymbol{r}) \mathcal{Y}_{\ell=0}^{j=1 / 2, m=1 / 2}$ in terms of other $\mathcal{Y}_{\ell}^{j, m}$.
c) Show that your result in b) is understandable by considering the transformation properties of the operator $\boldsymbol{s} \cdot \boldsymbol{r}$ under rotations and parity.
9) (10 pts) Let $\chi(\hat{\boldsymbol{n}})$ be the two-component eigenspinor of $\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}$ with eigenvalue +1 . Use the explicit form of $\chi(\hat{\boldsymbol{n}})$ (in terms of the angles that characterize $\hat{\boldsymbol{n}}$) to verify that $-i \sigma_{y} \chi^{*}(\hat{\boldsymbol{n}})$ is the two-component spinor with the spin direction reversed.

