QUANTUM MECHANICS II (524) PROBLEM SET 2 (hand in January 30)

- 4) (10 pts) Demonstrate that the spin-correlation function $C_{QM}(\hat{n}^{(1)}, \hat{n}^{(2)})$ is indeed given by $-\cos \Phi$ as indicated in the Phys. Rev. Letter discussed in class. The angle Φ is illustrated in Fig. 3 of that paper.
- 5) (20 pts) Construct all the nonzero matrix elements of the operator J^2 where $J = j_1 + j_2$ for the case $j_1 = 1 = j_2$ in the uncoupled basis. Diagonalize this 9x9 matrix on the computer and compare the eigenvalues and eigenvectors with the corresponding Clebsch-Gordan coefficients that you obtained in Problem Set 1.
- 6) (10 pts) Let \mathcal{T}_d denote the translation operator with displacement vector d; $\mathcal{D}(\hat{n}; \phi)$ the rotation operator about the axis characterized by \hat{n} and by an angle ϕ ; and Π the parity operator. Which, if any, of the following pairs commute and why?
 - a) \mathcal{T}_d and $\mathcal{T}_{d'}$ (d and d' are in different directions).
 - b) $\mathcal{D}(\hat{\boldsymbol{n}}; \phi)$ and $\mathcal{D}(\hat{\boldsymbol{n}}'; \phi')$ ($\hat{\boldsymbol{n}}$ and $\hat{\boldsymbol{n}}'$ are in different directions).
 - c) \mathcal{T}_d and Π .
 - d) $\mathcal{D}(\hat{\boldsymbol{n}}; \phi)$ and Π .