QUANTUM MECHANICS II (524)
PROBLEM SET 2 (hand in January 30)
4) (10 pts) Demonstrate that the spin-correlation function $C_{Q M}\left(\hat{\boldsymbol{n}}^{(1)}, \hat{\boldsymbol{n}}^{(2)}\right)$ is indeed given by $-\cos \Phi$ as indicated in the Phys. Rev. Letter discussed in class. The angle Φ is illustrated in Fig. 3 of that paper.
5) (20 pts) Construct all the nonzero matrix elements of the operator \boldsymbol{J}^{2} where $\boldsymbol{J}=\boldsymbol{j}_{1}+\boldsymbol{j}_{2}$ for the case $j_{1}=1=j_{2}$ in the uncoupled basis. Diagonalize this 9 x 9 matrix on the computer and compare the eigenvalues and eigenvectors with the corresponding Clebsch-Gordan coefficients that you obtained in Problem Set 1.
6) (10 pts) Let $\mathcal{T}_{\boldsymbol{d}}$ denote the translation operator with displacement vector \boldsymbol{d}; $\mathcal{D}(\hat{\boldsymbol{n}} ; \phi)$ the rotation operator about the axis characterized by $\hat{\boldsymbol{n}}$ and by an angle ϕ; and Π the parity operator. Which, if any, of the following pairs commute and why?
a) $\mathcal{T}_{\boldsymbol{d}}$ and $\mathcal{T}_{\boldsymbol{d}^{\prime}}$ (d and \boldsymbol{d}^{\prime} are in different directions).
b) $\mathcal{D}(\hat{\boldsymbol{n}} ; \phi)$ and $\mathcal{D}\left(\hat{\boldsymbol{n}}^{\prime} ; \phi^{\prime}\right)$ ($\hat{\boldsymbol{n}}$ and $\hat{\boldsymbol{n}}^{\prime}$ are in different directions).
c) \mathcal{T}_{d} and Π.
d) $\mathcal{D}(\hat{\boldsymbol{n}} ; \phi)$ and Π.

