QUANTUM MECHANICS II (524)
PROBLEM SET 1 (hand in January 23)

1) (10 points) Diagonalize \boldsymbol{S}^{2} for a system of two spin $\frac{1}{2}$ particles and generate the basis transformation to states with good total spin that way. Compare with the results obtained in class for this system.
2) (20 points) Find all nonvanishing Clebsch-Gordan coefficients that describe the coupling of two states with angular momentum 1 to a total angular momentum of 2,1 , and 0 . (Having successfully done this once, you can look Clebsch-Gordan coefficients up in a table or download code to calculate them from now on.)
3) (10 points) Consider a system made up of two spin- $\frac{1}{2}$ particles in a spin-singlet state (meaning the total spin $S=0$). Observer A measures spin components of particle 1 while B does the same for particle 2 .
a) Determine the probability for A to obtain the spin up in the y-direction when B makes no measurement. Same for the $\hat{\boldsymbol{n}}$-direction, where this unit vector lies in the $x z$-plane and makes a 45 degree angle with the z-axis.
b) Observer B obtains the spin of particle 2 to be up in the $\hat{\boldsymbol{n}}$-direction. What can be concluded about the outcome of observer A's measurement if (i) A measures $S_{1 y}$, and (ii) A measures $S_{1 x}$?
