QUANTUM MECHANICS I (523) PROBLEM SET 8 (hand in November 7)

30) Consider a system with angular momentum j=1, whose ket space is spanned by the basis $|+1\rangle$, $|0\rangle$, $|-1\rangle$ of three eigenkets common to J^2 (eigenvalue $2\hbar^2$) and J_z (respective eigenvalues $+\hbar$, 0 and $-\hbar$). The state of the system is given by

$$|\psi\rangle = \alpha |+1\rangle + \beta |0\rangle + \gamma |-1\rangle$$
,

where α, β and γ are three complex parameters.

- a) Calculate the mean value $\langle \boldsymbol{J} \rangle$ of the angular momentum in terms of α, β and γ .
- b) Give the expression for the three mean values $\langle J_x^2 \rangle$, $\langle J_y^2 \rangle$, and $\langle J_z^2 \rangle$ in terms of the same quantities.
- 31) Consider a physical system whose four-dimensional vector space is spanned by a basis of four eigenkets $|jm\rangle$ common to J^2 and J_z with j=0 or 1 and $-j \leq m \leq j$.
 - a) Determine the eigenkets common to J^2 and J_x in terms of these basis states.
 - b) Consider the normalized state

$$|\psi\rangle = \alpha |j = 1, m = 1\rangle + \beta |j = 1, m = 0\rangle + \gamma |j = 1, m = -1\rangle + \delta |j = 0, m = 0\rangle$$
.

Determine the probability of finding $2\hbar^2$ and \hbar if J^2 and J_x are measured simultaneously.

- c) Calculate the mean value of J_z when the system is in the state $|\psi\rangle$. Do the same for the operators J^2 and J_x .
- d) Now J_z^2 is measured. Determine the possible results, their probabilities and their mean value.

- 32) An angular momentum eigenstate $|j, m = j\rangle$ is rotated by an infinitesimal angle ϵ about the y-axis. Calculate to order ϵ^2 the probability that a measurement on the rotated state will yield the original state.
- 33) The wave function of a particle in a spherically symmetric potential V(r) is given by

$$\psi(\mathbf{r}) = (x + y + 3z)f(r)$$

- a) Is ψ an eigenfunction of ℓ^2 ? If yes, determine the ℓ -value. If no, what are the possible ℓ -values one may obtain upon measuring ℓ^2 ?
- b) What are the probabilities for the particle to be found in various m_{ℓ} states?