09/12/14

QUANTUM MECHANICS I (523) PROBLEM SET 2 (hand in September 19)

6) (10 points) Using the orthonormality of $|+\rangle$ and $|-\rangle$, prove

 $[S_i, S_j] = i\epsilon_{ijk}\hbar S_k$

and

$$\{S_i, S_j\} = \left(\frac{\hbar^2}{2}\right)\delta_{ij},$$

where

•
$$S_x = \frac{\hbar}{2} \left(|+\rangle \langle -|+|-\rangle \langle +| \right)$$

• $S_y = \frac{i\hbar}{2} \left(-|+\rangle \langle -|+|-\rangle \langle +| \right)$

• $S_z = \frac{\hbar}{2} \left(\left| + \right\rangle \left\langle + \right| - \left| - \right\rangle \left\langle - \right| \right)$.

7) (10 points) Construct kets $|\mathbf{S} \cdot \hat{\mathbf{n}}; + \rangle$ such that

$$oldsymbol{S}\cdot\hat{oldsymbol{n}}\left|oldsymbol{S}\cdot\hat{oldsymbol{n}}
ight;+
ight
angle=rac{\hbar}{2}\left|oldsymbol{S}\cdot\hat{oldsymbol{n}}
ight;+
ight
angle,$$

where \hat{n} is characterized by two angles α and β . α corresponds to the azimuthal angle (measured from the *x*-axis) and β is the polar angle. Express your answer as a linear combination of $|+\rangle$ and $|-\rangle$ kets. Make sure you solve the actual eigenvalue problem!

8) (10 points) Consider a beam with spin 1 atoms yielding three possible outcomes for a Stern-Gerlach magnet in the \hat{z} -direction. The corresponding eigenvalue equations for the \hat{z} -component of the spin are then

$$S_{z} |1\rangle = \hbar |1\rangle$$
$$S_{z} |0\rangle = 0\hbar |0\rangle$$
$$S_{z} |-1\rangle = -\hbar |-1\rangle$$

a) Construct the matrices representing the eigenkets in this basis as well as the matrix representation of S_z .

b) From experiments on such a system one may infer that the S_x eigenstates can be written as

$$|1_x\rangle = \frac{1}{2}|1\rangle + \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{2}|-1\rangle$$
$$|0_x\rangle = \frac{1}{\sqrt{2}}|1\rangle - \frac{1}{\sqrt{2}}|-1\rangle$$
$$-1_x\rangle = \frac{1}{2}|1\rangle - \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{2}|-1\rangle.$$

Check that these states are orthogonal and construct their matrix representations in the z-basis. Also construct the matrix representing the operator S_x in the z-basis.

c) A spin-1 system is prepared in the state

$$|\psi\rangle = \frac{2}{\sqrt{6}} |1\rangle - \frac{i}{\sqrt{6}} |0\rangle + \frac{i}{\sqrt{6}} |-1\rangle$$

Find the probabilities of measuring each of the possible spin components in the z-direction.

- 9) (10 points) A beam of spin 1/2 atoms goes through a series of Stern-Gerlach-type measurements as follows:
 - 1) The first measurement accepts $s_z = \hbar/2$ atoms and rejects $s_z = -\hbar/2$ atoms, where s_z denotes the eigenvalue of the operator S_z .
 - 2) The second measurement accepts $s_n = \hbar/2$ atoms and rejects $s_n = -\hbar/2$ atoms, where s_n is the eigenvalue of the operator $\boldsymbol{S} \cdot \hat{\boldsymbol{n}}$, with $\hat{\boldsymbol{n}}$ making an angle β in the *xz*-plane with respect to the *z*-axis.
 - 3) The third measurement accepts $s_z = -\hbar/2$ atoms and rejects $s_z = \hbar/2$ atoms.

What is the intensity of the final $s_z = -\hbar/2$ beam when the $s_z = \hbar/2$ beam surviving the first measurement is normalized to unity? How must one orient the second measuring apparatus in order to maximize the intensity of the final $s_z = -\hbar/2$ beam?