QUANTUM MECHANICS I (523)

PROBLEM SET 12 (hand in December 7 or earlier)
43) (15 points) Consider a particle with orbital angular momentum $\ell=0$ in the central potential

$$
V(r)=\frac{-V_{0}}{\exp \{\kappa r\}-1}
$$

called Hulthen's potential. Find the lowest energy eigenvalue using the operator method discussed in class for the three-dimensional oscillator and the Hydrogen-like Hamiltonian. Try

$$
G_{\ell=0}^{+} \approx p_{r}+i b_{0}+\frac{i c_{0}}{\exp \{\kappa r\}-1}
$$

with b_{0} and c_{0} constants.
44) (25 points) Define the operator

$$
\boldsymbol{M}=\frac{1}{2 m}(\boldsymbol{p} \times \boldsymbol{\ell}-\boldsymbol{\ell} \times \boldsymbol{p})-e^{2} \frac{\boldsymbol{r}}{r} .
$$

a) Show that

$$
\left[\ell_{i}, M_{j}\right]=i \hbar \epsilon_{i j k} M_{k}
$$

You should of course make use of the results of problem 37.
b) The Hamiltonian of the hydrogen atom

$$
H=\frac{\boldsymbol{p}^{2}}{2 m}-\frac{e^{2}}{r}
$$

commutes with \boldsymbol{M}. Demonstrate this. This symmetry is responsible for the accidental degeneracy of the Hydrogen atom (see Gottfried Sec. 5.2 for many more details and also Sakurai p. 265 for more information).

