QUANTUM MECHANICS (471)

PROBLEM SET 8 (hand in November 11)
23) (10 points) Construct the normalized antisymmetric state for 4 particles in terms of product states using generic labels for the single-particle quantum numbers.
24) (10 points) Diagonalize \boldsymbol{S}^{2} for a system of two spin- $\frac{1}{2}$ particles and generate the basis transformation to states with good total spin that way.
25) (20 points) The following operators are useful in dealing with the 3D harmonic oscillator:

$$
C_{\ell}^{ \pm}=p_{r} \pm \frac{i \hbar}{r}\left(\ell+\frac{1}{2} \pm \frac{1}{2}\right) \mp i m \omega r .
$$

We will also consider

$$
D_{\ell}^{ \pm}=p_{r} \pm \frac{i \hbar}{r}\left(\ell+\frac{1}{2} \pm \frac{1}{2}\right) \pm i m \omega r .
$$

a) Demonstrate that

$$
H_{\ell-1} C_{\ell}^{-}|E \ell\rangle=(E+\hbar \omega) C_{\ell}^{-}|E \ell\rangle .
$$

b) Show that the Hamiltonian can also be written as

$$
H_{\ell}=\frac{1}{2 m} D_{\ell \pm 1}^{\mp} D_{\ell}^{ \pm}-\hbar \omega\left(\ell+\frac{1}{2} \pm 1\right)
$$

c) Show then that

$$
D_{\ell}^{ \pm}|E, \ell\rangle=d_{E \ell}^{ \pm}|E \pm \hbar \omega, \ell \pm 1\rangle
$$

with $d_{E \ell}^{ \pm}$appropriate normalization constants.

