QUANTUM MECHANICS (471)

PROBLEM SET 7 (hand in October 28)
This problem set is worth 40 bonus points and involves filling in the steps that were only outlined in the lecture of $10 / 14 / 2016$.
23) (40 points)
a) Proof that the square of the orbital angular momentum can also be written as

$$
\boldsymbol{\ell}^{2}=\boldsymbol{p}^{2}\left(\boldsymbol{r}^{2}-r_{p}^{2}\right) .
$$

b) Demonstrate that for the Hydrogen Hamiltonian the following result holds

$$
\boldsymbol{r}^{2}\left[H, \boldsymbol{p}^{2}\right]=\frac{2 i \hbar^{3}}{m a_{0}}(\boldsymbol{p} \cdot \boldsymbol{r}+2 i \hbar) \frac{1}{r} .
$$

c) Using part b), demonstrate that the Λ operator yields the same effect on an eigenstate of the Hamiltonian as the operator $\boldsymbol{r}^{2}\left(\boldsymbol{p}^{2}-2 m H\right)^{2}$.
d) Confirm the expression for the Λ_{ℓ} operator and check that

$$
\Lambda_{\ell}=P_{\ell \pm 1}^{\mp} P_{\ell}^{ \pm}-4 \hbar^{2}\left(\ell+\frac{1}{2} \pm \frac{1}{2}\right)^{2} 2 m E .
$$

