QUANTUM MECHANICS (471)

PROBLEM SET 5 (hand in October 14)
19) (10 points) Find the eigenvalues of

$$
\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

Suppose an electron is in the spin state $\binom{\alpha}{\beta}$. If S_{y} is measured, what is the probability of the result $\hbar / 2$?
20) (10 points) Consider a particle with intrinsic spin 1 with eigenstates

$$
\boldsymbol{S}^{2}|S=1 M\rangle=\hbar^{2} S(S+1)|S=1 M\rangle
$$

and

$$
S_{z}|S=1 M\rangle=\hbar M|S=1 M\rangle
$$

Evaluate the matrix elements of

$$
S_{z}\left(S_{z}+\hbar\right)\left(S_{z}-\hbar\right)
$$

and

$$
S_{x}\left(S_{x}+\hbar\right)\left(S_{x}-\hbar\right)
$$

in the above representation.
21) (10 points) Show in detail using the strategy discussed in class that

$$
\langle r \theta \phi| \ell_{x}|\psi\rangle=-i \hbar\left(-\sin \phi \frac{\partial}{\partial \theta}-\cot \theta \cos \phi \frac{\partial}{\partial \phi}\right) \psi(r, \theta, \phi) .
$$

22) (10 points for part a) and 10 bonus points for part b)) Consider the matrix operators

$$
\frac{1}{2}(1+\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}) \text { and } \frac{1}{2}(1-\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}})
$$

where $\hat{\boldsymbol{n}}$ is a unit vector characterized by the usual angles α and β.
a) Apply these operators to the spinor χ_{-}and normalize the resulting spinors. Compare these spinors with the eigenstates obtained in Problem 6.
b) Apply these operators to a general spinor χ and normalize the resulting spinors. Compare with a) and discuss the properties of these operators.

