QUANTUM MECHANICS (471)

PROBLEM SET 5 (hand in October 7)
16) (20 points) Consider the spin precession problem with the Hamiltonian

$$
H=\omega S_{z} .
$$

The system is represented at time $t=0$ by the ket

$$
|\psi ; t=0\rangle=\frac{1}{2}\left|S_{z} ;+\right\rangle+\frac{i \sqrt{3}}{2}\left|S_{z} ;-\right\rangle .
$$

a) Calculate the energy dispersion for this state.
b) Determine the state at time t and calculate the probability that a measurement of S_{y} yields $\hbar / 2$.
c) Evaluate $\tau_{S_{x}}$ which represents the characteristic time of the evolution of the statistical distribution of S_{x} for the ket $|\psi ; t=0\rangle$

$$
\tau_{S_{x}}=\frac{\left\langle\left(\Delta S_{x}\right)^{2}\right\rangle^{1 / 2}}{\left|\frac{d\left\langle S_{x}\right\rangle}{d t}\right|}
$$

by first evaluating the time dependence of $\left\langle S_{x}\right\rangle$ and $\left\langle\left(S_{x}\right)^{2}\right\rangle$. You can now write the product of the energy dispersion and the characteristic time to generate what is often considered the time-energy uncertainty relation.
17) (10 points) Consider the 1-D harmonic oscillator. Do the following without using wave functions. Review the 1-D harmonic oscillator before proceeding.
a) Construct a linear combination of $|0\rangle$ and $|1\rangle$ such that $\langle x\rangle$ is as large as possible.
b) Assume that at $t=0$ the system is in this state. Determine the state at t and evaluate the expectation value $\langle x\rangle$ as a function of time.
c) Evaluate $\left\langle(\Delta x)^{2}\right\rangle$.
18) (10 points) Suppose a 2×2 matrix X (not necessarily Hermitian, nor unitary) is written as

$$
X=a_{0}+\boldsymbol{\sigma} \cdot \boldsymbol{a}
$$

where all a_{i} are numbers.
a) How are a_{0} and $a_{k}(k=1,2,3)$ related to $\operatorname{tr}(X)$ and $\operatorname{tr}\left(\sigma_{k} X\right)$?
b) Determine a_{0} and a_{k} in terms of the matrix elements $X_{i j}$.

