QUANTUM MECHANICS (471)

PROBLEM SET 3 (hand in September 23)
9) (5 points) Let A and B be observables. Suppose the simultaneous eigenkets of A and $B\left\{\left|a_{i} b_{j}\right\rangle\right\}$ form a complete orthonormal set of basis kets. Can one always conclude that $[A, B]=0$? If yes, prove it. If no, give a counterexample.
10) (25 points) Consider a three-dimensional ket space. In a certain orthonormal basis with kets $|1\rangle,|2\rangle$, and $|3\rangle$ the operators A and B are represented by

$$
A \Rightarrow\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & -a & 0 \\
0 & 0 & -a
\end{array}\right)
$$

and

$$
B \Rightarrow\left(\begin{array}{ccc}
b & 0 & 0 \\
0 & 0 & -i b \\
0 & i b & 0
\end{array}\right)
$$

with a and b both real.
a) Clearly A has a degenerate spectrum. Does B also have a degeneracy?
b) Show that A and B commute.
c) Find a new set of orthonormal kets which are simultaneous eigenkets of A and B. Specify the eigenvalues of A and B for each of these three eigenkets. Does this specification completely chracterize each eigenket or is there another commuting observable?
11) (10 points) Construct the transformation matrix that connects the basis in which S_{z} is diagonal to the one in which S_{x} is diagonal. Demonstrate that your result is consistent with the general relation

$$
U=\sum_{i}\left|b_{i}\right\rangle\left\langle a_{i}\right|
$$

which was discussed in class.

