QUANTUM MECHANICS (471) PROBLEM SET 10 (hand in December 2)

30) (30 points) A system with three states has a Hamiltonian that can be represented in that basis by

$$\begin{pmatrix} E_1 & 0 & a \\ 0 & E_1 & b \\ a^* & b^* & E_2 \end{pmatrix},\,$$

with $E_2 > E_1$. Consider the constants *a* and *b* to be of the same size but small compared to $E_2 - E_1$.

- a) Use second-order nondegenerate perturbation theory to calculate the perturbed eigenvalues. Is this procedure correct? Comment.
- b) Solve the problem exactly.
- c) Now use second-order degenerate perturbation theory and compare the three results obtained.
- 31) (10 points) Let $\mathcal{T}(d\mathbf{r})$ denote the infinitesimal translation operator with displacement vector $d\mathbf{r}$; $\mathcal{D}(\hat{\mathbf{n}}; \delta\phi)$ the infinitesimal rotation operator about the axis characterized by $\hat{\mathbf{n}}$ and by an angle $\delta\phi$; and Π the parity operator. Which, if any, of the following pairs commute and why?
 - a) $\mathcal{T}(d\mathbf{r})$ and $\mathcal{T}(d\mathbf{r}')$ ($d\mathbf{r}$ and $d\mathbf{r}'$ are in different directions).
 - b) $\mathcal{D}(\hat{\boldsymbol{n}};\delta\phi)$ and $\mathcal{D}(\hat{\boldsymbol{n}}';\delta\phi')$ ($\hat{\boldsymbol{n}}$ and $\hat{\boldsymbol{n}}'$ are in different directions).
 - c) $\mathcal{T}(d\mathbf{r})$ and Π .
 - d) $\mathcal{D}(\hat{\boldsymbol{n}}; \delta \phi)$ and Π .