QUANTUM MECHANICS (471)

PROBLEM SET 10 (hand in December 2)
30) (30 points) A system with three states has a Hamiltonian that can be represented in that basis by

$$
\left(\begin{array}{ccc}
E_{1} & 0 & a \\
0 & E_{1} & b \\
a^{*} & b^{*} & E_{2}
\end{array}\right),
$$

with $E_{2}>E_{1}$. Consider the constants a and b to be of the same size but small compared to $E_{2}-E_{1}$.
a) Use second-order nondegenerate perturbation theory to calculate the perturbed eigenvalues. Is this procedure correct? Comment.
b) Solve the problem exactly.
c) Now use second-order degenerate perturbation theory and compare the three results obtained.
31) (10 points) Let $\mathcal{T}(d \boldsymbol{r})$ denote the infinitesimal translation operator with displacement vector $d \boldsymbol{r} ; \mathcal{D}(\hat{\boldsymbol{n}} ; \delta \phi)$ the infinitesimal rotation operator about the axis characterized by $\hat{\boldsymbol{n}}$ and by an angle $\delta \phi$; and Π the parity operator. Which, if any, of the following pairs commute and why?
a) $\mathcal{T}(d \boldsymbol{r})$ and $\mathcal{T}\left(d \boldsymbol{r}^{\prime}\right)$ ($d \boldsymbol{r}$ and $d \boldsymbol{r}^{\prime}$ are in different directions).
b) $\mathcal{D}(\hat{\boldsymbol{n}} ; \delta \phi)$ and $\mathcal{D}\left(\hat{\boldsymbol{n}}^{\prime} ; \delta \phi^{\prime}\right)$ ($\hat{\boldsymbol{n}}$ and $\hat{\boldsymbol{n}}^{\prime}$ are in different directions).
c) $\mathcal{T}(d \boldsymbol{r})$ and Π.
d) $\mathcal{D}(\hat{\boldsymbol{n}} ; \delta \phi)$ and Π.

