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QUANTUM MECHANICS II (524)
PROJECT Hartree-“Fock” (hand in May 1)

Start by writing a computer program that solves the differential equation for the
radial wave function at negative energy for the effective potential an electron
experiences in an atom. Use a smooth function to go from −Z/r at small r to
−1/r at large r. Do this problem for the case Z = 10 (neutral Neon atom). Find
the lowest eigenvalues of this potential consistent with the number of electrons
that you are considering, i.e. you should find all the eigenvalues relevant for
putting all the electrons in according to the Pauli principle.

Note that you can either use the Numerov method (see below) or use the
diagonalization procedure used earlier. Because of the long range of the Coulomb
potential, there is some issue concerning the size of the grid that you need to
explore in the diagonalization (for a more appropriate strategy see secs 10.2.3 and
10.2.4 of my book in the library). When using the Numerov method, you can still
integrate the wave functions outward as for scattering (but now for negative
energy). You will have to consider an appropriate boundary condition in the
domain where the potential becomes negligible. Some relevant material was
discussed earlier in the course and can also be found in the Gottfried book
Ch.3.6b. In practice, this means that when you integrate the wave function out for
a certain chosen (negative) energy, the wave function will usually go to either
plus or minus infinity for large distances. That chosen energy will not be an
eigenvalue, since the eigenfunctions must be localized and normalizable. Vary the
energy until the wave function changes to the opposite behavior, i.e. if it went to
plus infinity before, it now goes to minus infinity. Somewhere between the two last
considered energies will be the energy of the bound state. You can make this more
precise by continuing this process. So finding the eigenvalues requires a search for
the energies that allow the boundary condition to be fulfilled in turn leading to a
discrete set of bound-state energies. Report the values of your single-particle
energies and compare with the experimental ionization energies for neon. In fact,
you might consider “optimizing” your interpolating function to get these numbers
approximately right. Also, plot all the normalized wave functions of the occupied
states and compare them on the same scale with the hydrogen-like wave functions.
Comment on the differences.

In the next step of this project, use the above wave functions to generate a new



Hartree potential (see class slides) for each occupied orbit. Make a orbit
dependent correction to simulate the Pauli principle that would be incorporated
when the Fock term is included. Solve for the new wave functions and repeat this
process until the results are self-consistent. Compare the wave functions with the
plot in the slides and report the energies of the occupied levels.
It may be wise to start this project by doing the helium atom first.


