Physics 217

Homework 6

1. See Figure 1. $\left\langle\psi_{1}\right| \hat{x}\left|\psi_{1}\right\rangle=\frac{2}{a} \int_{-a / 2}^{a / 2} x \cos ^{2}\left(\frac{\pi x}{a}\right) d x=0$ because you are integrating an odd function over even limits, likewise $\left\langle\psi_{2}\right| \hat{x}\left|\psi_{2}\right\rangle=0$.
2. (a) From Figure 2 you can see that you are most likely to find the particle in the x interval $[0,50]$.
(b) Doing the relevant integration you see that the wavefunction is normalized. Figure 3 shows the expectation value of x. This makes sense because the largest amount of the wavefunction was located in this interval.
3. (a) $\omega_{1}=\frac{E_{1}}{\hbar}=\frac{\pi^{2} \hbar}{2 m a^{2}}$ and likewise $\omega_{2}=\frac{2 \pi^{2} \hbar}{m a^{2}}$. ψ_{1} evolves as $\exp \left[-\frac{i E_{1} t}{\hbar}\right]=\exp \left[-i \omega_{1} t\right]$ and ψ_{2} evolves as $\exp \left[-i \omega_{2} t\right]$.
(b) Figure 4 you can see that the wavefn (x, t) returns the same thing as wavefn_t $0(x)$.
(c) In the animated plot the probability density oscillates between the positive and negative x regions with a period of ~ 42.
(d) Figure 5 shows the plot of expected $_x(t)$.
4. $\langle\Psi| x|\Psi\rangle=\int_{-a / 2}^{a / 2} \Psi^{*} x \Psi d x$. Using the result of question one we know that the terms which look like $\psi_{1}^{*} x \psi_{1}$ and $\psi_{2}^{*} x \psi_{2}$ don't contribute anything. Thus we are left with $\frac{1}{a}\left(e^{\frac{i \Delta E t}{\hbar}}+e^{-\frac{i \Delta E t}{\hbar}}\right) \int_{-a / 2}^{a / 2} x \cos \left(\frac{\pi x}{a}\right) \sin \left(\frac{2 \pi x}{a}\right) d x$. Upon substitution and making use of the given integral and Euler's equation we get $\langle x\rangle=\frac{16 a}{9 \pi^{2}} \cos \left(\frac{\Delta E t}{\hbar}\right)$. Plugging the appropriate values we see that the amplitude and period match the earlier value ($A m p \sim 18.01$ and $T \sim 42$).

Figure 1: ψ_{1} and ψ_{2}

Figure 2: $\psi(x)$ and $|\psi(x)|^{2}$

Figure 3: The expectation value of x.

Figure 4: Initial wavefunction using new .m file.

Figure 5: plot of expected $_x(t)$

