Physics 217

Homework 4

- 1. (a) To normalize the wavefunction set $1 = \int_{-\infty}^{\infty} \psi^* \cdot \psi dx$. Making use of integral given you get $C = \sqrt{\frac{2}{a\pi}}$.
 - (b) bump(1,2.5) = 0.4350
 - (c) When you integrate a properly normalized wavefunction over all space you should get the value of 1. Using the MatLab formula given you should get exactly this.
 - (d) The plot on the next page is for the 3 different values of a requested. As the value of a increases the wavefunction spreads out.
- 2. (a) $\langle \hat{x} \rangle = \int_{-\infty}^{\infty} \psi^* \cdot x \cdot \psi dx$. This is the integral of an odd function over even limits thus it is equal to zero $\langle \hat{x} \rangle = 0$.

(b) $\langle x^2 \rangle = \int_{-\infty}^{\infty} \psi^* x^2 \psi dx$. Making use of the integral given you get $\langle x^2 \rangle = a^2$. When I plugged the given formula into MatLab I got $\langle x^2 \rangle = 15.9999$ for a value of a = 4 which checks out.

3. (a) $\hat{x}\psi(x) = \hat{x}\cos(kx) = x\cos(kx)$, this operator produces a new function $(x\cos(kx))$ when it acts on $\psi(x)$ so $\psi(x)$ is not an eigenfunction of the position operator.

(b) $\hat{p}\psi(x) = \hat{p}\cos(kx) = \hat{p}(2)[e^{ikx} + e^{-ikx}]$. $\psi(x) = \cos(kx)$ is a linear combination of two eigenstates of momentum, one with eigenvalue k and the other with eigenvalue -k. Thus when \hat{H} acts on $\psi(x)$ both states yield the same energy proving that $\psi(x)$ is an eigenfunction.

(c) $\hat{H}\psi(x) = \left[\frac{\hbar^2 k^2}{2m}\right]\psi(x)$. $\psi(x)$ is an eigenvalue of the Hamiltonian with eigenvalue of $\frac{\hbar^2 k^2}{2m}$. The wavefunction will evolve in time according to the equation $\Psi(x,t) = \cos(kx)e^{-iEt/\hbar}$.

Figure 1: As a increase the width of the wavefunction increases.