Problem set 9

1. The allowed values of the energy is $E=\frac{k_{I}^{2} \hbar^{2}}{2 m}$.
2. $k_{I I}=\sqrt{\frac{2 m V_{0}}{\hbar^{2}}-k_{I}^{2}}=k_{I} \tan \left(\frac{k_{I} a}{2}\right)$.

Hence $\frac{k_{I} a}{2} \tan \left(\frac{k_{I} a}{2}\right)=\frac{a}{2} \sqrt{\frac{2 m V_{0}}{\hbar^{2}}-k_{I}^{2}}$.

$$
\text { Make the substitution } \Upsilon=\frac{a \sqrt{2 \mathrm{mV}_{0}}}{2 \hbar}, \theta=\frac{\mathrm{k}_{1} a}{2},
$$

and we arrive at the desired expression $\theta \tan \theta=\sqrt{r^{2}-\theta^{2}}$.
$\ln [1]:=\operatorname{plot}$ even $\left[\Upsilon_{-}\right]=\operatorname{Plot}\left[\left\{\theta \operatorname{Tan}[\theta], \sqrt{\Upsilon^{2}-\theta^{2}}\right\},\{\theta, 0,1.1 \Upsilon\}, \operatorname{PlotRange} \rightarrow\{0,2 \Upsilon\}\right.$, PlotLegends $\rightarrow\left\{" \theta \tan (\theta) ", " \sqrt{r^{2}-\theta^{2}} "\right\}, \operatorname{Epilog} \rightarrow\{\operatorname{Arrow}[\{\{2,3\},\{\operatorname{Pi} / 2,2\}\}]$, Text["Not physical function", $\{1.5,3\},\{-1,-1\}]\}$;
plot\$even [1]
plot\$even [2]
plot\$even [6]

For $\Upsilon=1$, there is only one even bound state;
For $\Upsilon=2$, there is only one even bound state;
For $\Upsilon=6$, there are two even bound states.
3. The wavefunction and its derivative are continuous at $\frac{a}{2}$. Hence we have
$\operatorname{Asin}\left(k_{I} \frac{a}{2}\right)=C e^{-k_{I I} \frac{a}{2}}$
$A k_{I} \cos \left(k_{I} \frac{a}{2}\right)=-k_{I I} C e^{-k_{I I} \frac{a}{2}}$
Divide equation (1) by equation (2),
$\frac{1}{k_{I}} \tan \left(k_{I} \frac{a}{2}\right)=-\frac{1}{k_{I I}}$, where $k_{I}^{2}+k_{I I}^{2}=\frac{2 m V_{0}}{\hbar^{2}}$.

$$
\text { Boundary condition at } x=-\frac{a}{2}:-A \sin \left(k_{I} \frac{a}{2}\right)=C_{I} e^{k_{I} \frac{a}{2}} ;
$$

boundary condition at $x=\frac{a}{2}$: Asin $\left(k_{I} \frac{a}{2}\right)=C_{I I I} e^{-k_{I I} \frac{a}{2}}$. Therefore,
$C_{I}=-C_{I I I}$, the value of C for the solution in region I
is the negative of the value for the solution in region III.
$k_{I} \cot \left(k_{I} \frac{a}{2}\right)=-k_{I I}=-\sqrt{\frac{2 m V_{0}}{\hbar^{2}}-k_{I}^{2}}$
$\frac{a k_{I}}{2} \cot \left(k_{I} \frac{a}{2}\right)=-\frac{a}{2} \sqrt{\frac{2 m V_{0}}{\hbar^{2}}-k_{I}^{2}}$
If we make the substitution $r=\frac{a \sqrt{2 m V_{0}}}{2 \hbar}$,
$\theta=\frac{a k_{I}}{2}$, then we arrive at $-\theta \cot \theta=\sqrt{r^{2}-\theta^{2}}$.
$\ln [8]:=\operatorname{plot} \$ \operatorname{odd}\left[\Upsilon_{-}\right]=\operatorname{Plot}\left[\left\{-\theta \operatorname{Cot}[\theta], \sqrt{\Upsilon^{2}-\theta^{2}}\right\},\{\theta, 0,1.1 \Upsilon\}\right.$,

$$
\text { PlotRange } \left.\rightarrow\{0,2 \Upsilon\}, \text { PlotLegends } \rightarrow\left\{"-\theta \cot (\theta) ", " \sqrt{r^{2}-\theta^{2}} "\right\}\right]
$$

$\ln [9]:=$ plot\$odd [1]
plot\$odd [2]
plot\$odd [6]

For $\Upsilon=1$, there is no odd bound state;
For $\Upsilon=2$, there is only one odd bound state;
For $\Upsilon=6$, there are two odd bound states.
4. If $\Upsilon=\frac{a \sqrt{2 m V_{0}}}{2 \hbar} \rightarrow 0$, then the depth of the well $V_{0} \rightarrow 0$.

However as long as the depth of the well is not exactly 0 ,
there should always be (at least) one solution. This means that its
binding energy goes to zero and its spatial extent goes to infinity.
5. For large $\Upsilon, \theta \tan \theta=\sqrt{\Upsilon^{2}-\theta^{2}} \sim \Upsilon$.

The energies of these states are $E=$

$$
\frac{\mathrm{k}_{\mathrm{I}}^{2} \hbar^{2}}{2 \mathrm{~m}}=\frac{\left(\frac{2 \theta}{\mathrm{a}}\right)^{2} \hbar^{2}}{2 \mathrm{~m}}=\frac{2\left(j+\frac{1}{2}\right)^{2} \pi^{2} \hbar^{2}}{\mathrm{ma}^{2}}=\frac{(2 j+1)^{2} \pi^{2} \hbar^{2}}{2 \mathrm{ma}^{2}},
$$

where j is an integer, i.e. $(2 j+1)$ is an odd number.
Recall that the eigenenergies corresponding to
the even eigenstates (that is, the cos function solutions)
of the infinite well are $\frac{\hbar^{2}}{2 m}\left(\frac{n \pi}{a}\right)^{2}$, where n is an odd number.
Therefore, when $\Upsilon \rightarrow \infty$ we restore the infinite well case.
This makes sense since if $Y=\frac{a \sqrt{2 m V_{0}}}{2 \hbar} \rightarrow \infty$ at fixed a, then we must have $V_{0} \rightarrow \infty$.

