Problem set 8

(* 1. The point of this problem is to illustrate that
if a particle's position is well known, its momentum is not. Initially we know the particle is located inside the nucleus, meaning that $\Delta r=7.8 \times 10^{-15} \mathrm{~m}$. Using the uncertainty relation we get $\Delta \mathrm{p} \geqslant$ $\frac{\hbar}{2 \Delta r}$. The uncertainty in the velocity is $\Delta v=\frac{\Delta p}{m}=7.4 \times 10^{9}$, which is larger than the speed of light. This illustrates the
fact that we do not know anything about the momentum. The possible energy of the electron is $\Delta \mathrm{E}=\frac{(\Delta \mathrm{p})^{2}}{2 \mathrm{~m}}=2.49 \times 10^{-11} \mathrm{~J}=156 \mathrm{MeV}$.

Here you notice that this energy value is much greater than the rest mass of the electron ($m_{e}=0.511 \mathrm{MeV}$). So if we were doing this problem entirely correctly we would have used the relativistic energy relation $E^{2}=p^{2} c^{2}+m_{e}^{2} c^{4}$.
*)
(* 2. We know that $T=\left[1+\frac{\sin ^{2}\left(k_{2} a\right)}{4 E / V_{0}\left(E / V_{0}-1\right)}\right]^{-1}$ and $R=$
1-T. We must take care to use the correct value of a. In this
formula a refers to the entire width of the well thus here $a=$ 2 nm . From the given energy we get a value of $\mathbf{k}_{2}=$ $7.24 \times 10^{9} \mathrm{~m}^{-1}$. This leads to $\mathrm{R}=0.228$.
*)
(* 3. For $E>U_{0}$, the reflection amplitude is $|r|^{2}=R=\frac{\sin ^{2}\left(k_{2} a\right)}{\sin ^{2}\left(k_{2} a\right)+4 \frac{k_{2}^{2} k_{1}^{2}}{\left(k_{2}^{2}-k_{1}^{2}\right)^{2}}}$,
where $k_{2}=\frac{\sqrt{2 m\left(E-U_{0}\right)}}{\hbar}, k_{1}=\frac{\sqrt{2 m E}}{\hbar} . k_{2}$ and k_{1} are both real, hence $\frac{k_{2}^{2} k_{1}^{2}}{\left(k_{2}^{2}-k_{1}^{2}\right)^{2}}>0$, the denominator is larger than the numerator. Therefore $|r| \leq 1$;

For $E<U_{0}, k_{2}$ is imaginary. The reflection amplitude is $|r|^{2}=$

$$
R=\frac{\sinh ^{2}\left(\frac{\sqrt{2 m\left(U_{0}-E\right)}}{\hbar} a\right)}{\sinh ^{2}\left(\frac{\sqrt{2 m\left(U_{0}-E\right)}}{\hbar} a\right)+4 \frac{E}{U_{0}}\left(1-\frac{E}{U_{0}}\right)} . \text { Now } \frac{E}{U_{0}}\left(1-\frac{E}{U_{0}}\right)>0,
$$

hence the denominator is larger than the numerator. Therefore $|r| \leq 1$.
Also you can note that $R=$
$1-T=1-\left[1+\frac{\sin ^{2}(k a)}{4 E / V_{0}\left(E / V_{0}-1\right)}\right]^{-1}$. Since T is always zero or a positive number,
R is a number which is smaller than or equal to 1 . We know that $R=\|$
$\left.r\right|^{2}$ thus meaning that $|r| \leq 1$. If r were a number greater than 1 ,
that would mean that particles were being created at the
boundary of the potential which can not be true and we know that a value of r less than 0 has no physical meaning.
*)
(* 4. (a)

$$
\begin{aligned}
&\left|\psi_{I}\right|^{2}=\left|A e^{i k x}+B e^{-i k x}\right|^{2}=|A|^{2}\left|e^{i k x}-\frac{\alpha+i k}{\alpha-i k} e^{-i k x}\right|^{2}=|A|^{2}\left(e^{i k x}-\frac{\alpha+i k}{\alpha-i k} e^{-i k x}\right)\left(e^{-i k x}-\frac{\alpha-i k}{\alpha+i k} e^{i k x}\right) \\
&=|A|^{2}\left(1-\frac{\alpha+i k}{\alpha-i k} e^{-2 i k x}-\frac{\alpha-i k}{\alpha+i k} e^{2 i k x}+1\right)=|A|^{2} \frac{2\left(\alpha^{2}+k^{2}\right)-(\alpha+i k)^{2} e^{-2 i k x}-(\alpha-i k)^{2} e^{2 i k x}}{\alpha^{2}+k^{2}} \\
&=|A|^{2} \frac{2\left(\alpha^{2}+k^{2}\right)-\left(\alpha^{2}-k^{2}\right)\left(e^{-2 i k x}+e^{2 i k x}\right)+2 i k \alpha\left(e^{2 i k x}+e^{-2 i k x}\right)}{\alpha^{2}+k^{2}} \\
&=|A|^{2} \frac{2\left(\alpha^{2}+k^{2}\right)-2\left(\alpha^{2}-k^{2}\right)\left(\cos ^{2}(k x)-\sin ^{2}(k x)\right)-8 \sin (k x) \cos (k x)}{\alpha^{2}+k^{2}} \\
&=4|A|^{2}\left(\frac{\alpha}{\sqrt{\alpha^{2}+k^{2}}} \sin (k x)-\frac{k}{\sqrt{\alpha^{2}+k^{2}}} \cos (k x)\right)^{2}=4|A|^{2}(\sin (k x) \cos \theta-\cos (k x) \sin \theta)^{2},
\end{aligned}
$$

where $\tan \theta=\frac{k}{\alpha}$. Thus $\left|\psi_{I}\right|^{2}=4|A|^{2} \sin ^{2}(k x-\theta)$.
(b) If $k=0$,
then $\theta=0^{\circ}$ and $D=0$. The wave is zero at the step. The step is relatively so high that the wave does not penerate it.
If $\alpha=0$, then $\theta=90^{\circ}$ and $D=2 A$. The wave is maximum
at the step and there is much penetration.
*)
(* 5. This is not tunneling;
the kinetic energy is never negative and the wave function between 0 and L is thus of the form $e^{i k ' x}$ not $e^{-\alpha x}$. Therefore, we need only replace U_{0} by -
U_{0} in the potential barrier reflection equation (6-13).

$$
R=\frac{\sin ^{2}\left(\frac{\sqrt{2 m\left(E+U_{0}\right)}}{n} L\right)}{\sin ^{2}\left(\frac{\sqrt{2 m\left(R+0_{0}\right)}}{n} L\right)+4 \frac{E}{v_{0}}\left(\frac{E}{v_{0}}+1\right)} .
$$

*)

