Problem set 8

(* 1. The point of this problem is to illustrate that
if a particle's position is well known, its momentum is
not. Initially we know the particle is located inside the nucleus,

meaning that Ar=7.8x10"'°m. Using the uncertainty relation we get Ap:>

L. The uncertainty in the velocity is Av="2=7.4x10°,

which is larger than the speed of light. This illustrates the
fact that we do not know anything about the momentum. The

possible energy of the electron is AE= (f” =2.49x10"11J=156MeV.

Here you notice that this energy value is much greater
than the rest mass of the electron (m.,=0.511MeV). So if
we were doing this problem entirely correctly we would
have used the relativistic energy relation E2=p?c?+m2c*

*)

(* 2. We know that T=[1 —sin®(ga) ] and R=
4E/V, (E/Vo-1)

1-T. We must take care to use the correct value of a. In this
formula a refers to the entire width of the well thus here a=
2nm. From the given energy we get a value of k;=
7.24x10°m™!. This leads to R=0.228.
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the denominator is larger than the numerator. Therefore |r|<1;
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For E<Up, k; is imaginary. The reflection amplitude is |r
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hence the denominator is larger than the numerator. Therefore |r|=xl.
Also you can note that R=

1—T=1—[1+ —sin®(ka) ] . Since T is always zero or a positive number,
4E/V, (E/Vo-1)

R is a number which is smaller than or equal to 1. We know that R=|
r|? thus meaning that |r|<l. If r were a number greater than 1,
that would mean that particles were being created at the
boundary of the potential which can not be true and we
know that a value of r less than 0 has no physical meaning.
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where tane=§. Thus |y1|2=4|A|2sin? (kx-6) .
(b) If k=0,

then 6=0° and D=0. The wave is zero at the step. The step is relatively
so high that the wave does not penerate it.
If a=0, then 6=90°

and D=2A. The wave is maximum
at the step and there is much penetration.
*)

(*

5. This is not tunneling;
the kinetic energy is never negative and the wave function between 0 and L is
thus of the form e*'* not e ®*. Therefore, we need only replace U, by -

Uy in the potential barrier reflection equation (6-13).
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