Problem Set 5

1. The electron in an infinite quantum well with quantum number n has energy $E_{\mathrm{n}}=\frac{\hbar^{2} \pi^{2} \mathrm{n}^{2}}{2 \mathrm{~m} \mathrm{a}^{2}}$. Hence when it makes a transition from the state n to the ground state, the energy released is $\Delta E=E_{n}-E_{1}=\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}\left(n^{2}-1\right)=\frac{h c}{\lambda}$, where λ is the wavelength of the emitted photon.

$$
\text { Therefore the wavelength of the photon is } \lambda=\frac{2 \mathrm{hcm} \mathrm{a}}{\hbar^{2} \pi^{2}\left(\mathrm{n}^{2}-1\right)} \text {. }
$$

2. If both n and m are odd numbers :

$$
\begin{aligned}
& \int_{-a / 2}^{a / 2} \psi_{n}^{\star}(x) \psi_{m}(x) d x= \\
& \frac{2}{a} \int_{-a / 2}^{a / 2} \cos \left(\frac{n \pi}{a} x\right) \cos \left(\frac{m \pi}{a} x\right) d x=\left(* \text { change of variable: } z=\frac{\pi}{a} x *\right) \\
& \frac{2}{\pi} \int_{-\pi / 2}^{\pi / 2} \cos (n z) \cos (m z) d z=(* \text { product of two even functions } \\
& \quad \text { is still an even function *) } \frac{4}{\pi} \int_{0}^{\pi / 2} \cos (n z) \cos (m z) d z= \\
& \quad(* n \neq m *) \frac{4}{\pi} \frac{1}{n^{2}-m^{2}}\left(n \sin \left(\frac{n \pi}{2}\right) \cos \left(\frac{m \pi}{2}\right)-m \cos \left(\frac{n \pi}{2}\right) \sin \left(\frac{m \pi}{2}\right)\right)
\end{aligned}
$$

Since n and m are odd integers, $\cos \left(\frac{n \pi}{2}\right)$ and $\cos \left(\frac{m \pi}{2}\right)$ are

$$
\text { both } 0 \text {. Then we get } \int_{-a / 2}^{a / 2} \psi_{\mathrm{n}}^{*}(\mathrm{x}) \psi_{\mathrm{m}}(\mathrm{x}) \mathrm{d} \mathbf{x}=0 \text {; }
$$

If both n and m are even numbers :

$$
\begin{aligned}
& \int_{-a / 2}^{a / 2} \psi_{n}^{*}(x) \psi_{m}(x) d x= \\
\frac{2}{a} & \int_{-a / 2}^{a / 2} \sin \left(\frac{n \pi}{a} x\right) \sin \left(\frac{m \pi}{a} x\right) d x=\frac{2}{\pi} \int_{-\pi / 2}^{\pi / 2} \sin (n z) \sin (m z) d z=(* \text { product of }
\end{aligned}
$$

$$
\text { two odd functions is an even function *) } \frac{4}{\pi} \int_{0}^{\pi / 2} \sin (n z) \sin (m z) d z=
$$

$$
\frac{4}{\pi} \frac{1}{n^{2}-m^{2}}\left(m \sin \left(\frac{n \pi}{2}\right) \cos \left(\frac{m \pi}{2}\right)-n \cos \left(\frac{n \pi}{2}\right) \sin \left(\frac{m \pi}{2}\right)\right)
$$

Since n and m are even integers, $\sin \left(\frac{n \pi}{2}\right)$ and $\sin \left(\frac{m \pi}{2}\right)$ are

$$
\text { both } 0 \text {. Then we get } \int_{-\mathrm{a} / 2}^{\mathrm{a} / 2} \psi_{\mathrm{n}}^{*}(\mathrm{x}) \psi_{\mathrm{m}}(\mathrm{x}) \mathrm{d} \mathrm{x}=0 \text {; }
$$

If n is an odd number and m is an even number :

$$
\int_{-a / 2}^{a / 2} \psi_{n}^{\star}(x) \psi_{m}(x) d x=\frac{2}{a} \int_{-a / 2}^{a / 2} \cos \left(\frac{n \pi}{a} x\right) \sin \left(\frac{m \pi}{a} x\right) d d x=0
$$

(* the product of an odd function and an even funciton is an odd funciton. And the integration of an odd function over a range symmetric about origin is 0. *)

Hence for any $n \neq m$, the normalized eigenfunctions of the

$$
\text { infinite potential well have the property } \int_{-a / 2}^{a / 2} \psi_{\mathrm{n}}^{*}(x) \psi_{\mathrm{m}}(x) d \mathbb{x}=0
$$

3. (a)

Since ψ is properly normalized, we have
$\int_{-a / 2}^{a / 2} \psi^{*}(x) \psi(x) d x=1$.
Plug the expansion of ψ in, and we find :

$$
\begin{aligned}
& \int_{-\mathrm{a} / 2}^{\mathrm{a} / 2} \psi^{*}(\mathbf{x}) \psi(\mathrm{x}) \mathrm{d} \mathbf{x}= \\
& \mathbf{1}=\int_{-\mathrm{a} / 2}^{\mathrm{a} / 2}\left(\mathrm{~A} \psi_{1}(\mathbf{x})+\mathrm{B} \psi_{2}(\mathbf{x})\right)^{*}\left(\mathrm{~A} \psi_{1}(\mathbf{x})+\mathrm{B} \psi_{2}(\mathbf{x})\right) \mathrm{d} \mathbf{x}=\text { (* expand the } \\
& \text { product. For convenience, drop the } \mathbf{x} \text { argument in function } \psi . *) \\
& \int_{-\mathrm{a} / 2}^{\mathrm{a} / 2}|\mathrm{~A}|^{2} \psi_{1}^{*} \psi_{1}+|\mathrm{B}|^{2} \psi_{2}^{*} \psi_{2}+\left(\mathrm{A}^{*} \mathrm{~B} \psi_{1}^{*} \psi_{2}+\mathrm{B}^{*} \mathrm{~A} \psi_{2}^{*} \psi_{1}\right) \mathrm{d} \mathbf{x}= \\
& |\mathrm{A}|^{2} \delta_{1,1}+|\mathrm{B}|^{2} \delta_{2,2}+\left(\mathrm{A} * \mathrm{~B}+\mathrm{B}^{*} \mathrm{~A}\right) \delta_{1,2}=|\mathrm{A}|^{2}+|\mathrm{B}|^{2} . \\
& \text { Therefore, }|\mathrm{A}|^{2}+|\mathrm{B}|^{2}=1 .
\end{aligned}
$$

(b)

Eigenvalues of the infinite square well is $E_{n}=$

$$
\begin{aligned}
& \frac{\hbar^{2} \pi^{2} n^{2}}{2 m a^{2}} \text {. Hence the probability of getting energy } E_{1}= \\
& \frac{\hbar^{2} \pi^{2}}{2 m a^{2}} \text { for an energy measurement is }|A|^{2},
\end{aligned}
$$

and the probability of getting $E_{2}=\frac{2 \hbar^{2} \pi^{2}}{m a^{2}}$ is $|B|^{2}$;
The expectation value of the energy for this wave function is therefore <

$$
\hat{H}>=|A|^{2} \frac{\hbar^{2} \pi^{2}}{2 m a^{2}}+|B|^{2} \frac{2 \hbar^{2} \pi^{2}}{m a^{2}}
$$

4. $\psi_{2}=\sqrt{\frac{2}{a}} \sin \left(\frac{2 \pi}{a} x\right), E_{2}=\frac{2 \hbar^{2} \pi^{2}}{m a^{2}} ;$
$\psi_{3}=\sqrt{\frac{2}{a}} \cos \left(\frac{3 \pi}{a} x\right), E_{3}=\frac{9 \hbar^{2} \pi^{2}}{2 m a^{2}} ;$
Hence the probability that the electron is in the domain $\left[-\frac{a}{2}, 0\right]$ is :

$$
\begin{aligned}
& \ln [1]:=\int_{-\frac{a}{2}}^{0}\left(\frac{1}{\sqrt{2}} \sqrt{\frac{2}{a}}\left(\operatorname{Sin}\left[\frac{2 \pi}{a} \mathbf{x}\right] E^{\dot{\underline{i}} \frac{2 \hbar \pi^{2}}{m a^{2}} t}+\operatorname{Cos}\left[\frac{3 \pi}{a} \mathbf{x}\right] E^{\dot{\underline{i}} \frac{9 \hbar \pi^{2}}{2 m a^{2}} t}\right)\right) \\
& \quad\left(\frac{1}{\sqrt{2}} \sqrt{\frac{2}{a}}\left(\operatorname{Sin}\left[\frac{2 \pi}{a} \mathbf{x}\right] E^{-\dot{\mathrm{i}} \frac{2 \hbar \pi^{2}}{m \mathrm{a}^{2}} t}+\operatorname{Cos}\left[\frac{3 \pi}{a} \mathbf{x}\right] E^{-\dot{\text { in }} \frac{9 \hbar \pi^{2}}{2 m a^{2}} t}\right)\right) d \mathbf{x} \\
& \text { Out }[1]=\frac{1}{2}+\frac{4 \operatorname{Cos}\left[\frac{5 \pi^{2} t \hbar}{2 a^{2} m}\right]}{5 \pi}
\end{aligned}
$$

The period of oscillation of this probability is $\tau=2 \frac{\pi}{\omega}=\frac{4 a^{2} \mathrm{~m}}{5 \pi \hbar}$.

