Problem set 3

1. For electrons and protons, kinetic energy $E=\frac{m v^{2}}{2}=\frac{p^{2}}{2 m}$, and de Broglie wavelength $\lambda=\frac{\mathrm{h}}{\mathrm{p}}$. Therefore we get $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}$.
$\ln [1]:=h=\frac{6.626 \times 10^{-34}}{1.6 \times 10^{-19}} ; \quad(*$ in units of eV.s *)
me $=0.511 \times 10^{6}$;
(* in units of $\mathrm{eV} / \mathrm{c}^{2}$. hence the rest energy of electrons is me* $\mathrm{c}^{2}=$ $\left.0.511 * 10^{6} \mathrm{eV} *\right)$
$\mathrm{mp}=938 \times 10^{6} ; \quad\left(*\right.$ in units of $\mathrm{eV} / \mathrm{c}^{2}$. hence the rest energy of protons is mp* $\left.c^{2}=938 * 10^{6} \mathrm{eV} *\right)$
lambda [$\left.e_{-}, m_{-}\right]:=h / \sqrt{2 m e}$;
Show[Plot[lambda[e, me], \{e, 0, me * 0.05\}],
AxesLabel \rightarrow \{"Energy (eV)", "Wavelength (m)"\},
PlotLabel \rightarrow "de Broglie wavelength versus energy for electrons"]
Plot[lambda[e, mp] , $\{e, 0, \mathrm{mp} * 0.05\}$,
AxesLabel \rightarrow \{"Energy (eV)", "Wavelength (m)"\},
PlotLabel \rightarrow "de Broglie wavelength versus energy for protons"]
de Broglie wavelength versus energy for electrons
Wavelength (m)

de Broglie wavelength versus energy for protons Wavelength (m)

2. (a) Convert the unit of Planck' s constant into the SI base units.
$\mathrm{Js}=\left(\mathrm{m} / \mathrm{s}^{2}\right) \mathrm{kgms}=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-1}$.
Since angular momentum is $r \times p$, the SI base units for angular momentum is $\mathrm{mkg}(\mathrm{m} / \mathrm{s})=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-1}$.

Hence it is obvious that Planck' sconstant has the dimension of angular momentum.
(b) The average radius of a ground state
hydrogen atom (which is also the distance of the electron and the proton for the ground state hydrogen atom) is $r=0.0529 \mathrm{~nm}$.

The gravitational attraction between the electron and the proton is:
$\ln [7]=\mathbf{r}=0.0529$;
$\mathrm{g}=6.674 \times 10^{-11}$; (* gravitational constant, in units of $\mathrm{m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} *$)
me $=9.109 \times 10^{-31} ; \quad$ (* electron mass, in units of $\mathrm{kg} *$)
$\mathrm{mp}=1.673 \times 10^{-27}$; (* proton mass, in units of $\mathrm{kg} *$)
fgrav $=\mathrm{gmemp} /\left(\mathrm{r} 10^{-9}\right)^{2} \quad(*$ gravitational force, in units of $\mathrm{N} *)$
$O u t[11]=3.63447 \times 10^{-47}$
The Coulomb attraction between the electron and the proton is:
$\ln [12]:=k=8.99 \times 10^{9}$; (* Coulomb constant, in units of $\mathrm{N} \mathrm{m}^{2} \mathrm{C}^{-2}$ *)
fcou $=k\left(1.6 \times 10^{-19}\right)^{2} /\left(\mathrm{r}_{10} 0^{-9}\right)^{2} \quad$ (* Coulomb force, in units of $\mathrm{N} *$)
Out[13]= 8.2241×10^{-8}
Since gravitational force is 10^{39} order smaller than Coulomb force, we can ignore the gravitational force.
3. (a) According to Bohr' s model,
the quantum number of the ground state of the hydrogen atom is $n=1$.
(b) The orbital radius is $r=a_{0} n^{2}=0.0529 \mathrm{~nm}$;
(c) The angular momentum is $\mathrm{L}=\mathrm{n} \hbar=1.055 * 10^{-34} \mathrm{~J} \mathrm{~s}$;
(d) The linear moment is $\mathrm{mv}=\mathrm{L} / \mathrm{r}=1.99 \times 10^{-24} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$;
(e) The angular velocity is $\omega=v / r=4.14 \times 10^{16} \mathrm{~s}^{-1}$;
(f) The linear speed is $v=L /(\mathrm{mr})=2.19 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$;
(g) The force on the electron is $m \frac{v^{2}}{r}=$
$8.26 \times 10^{-8} \mathrm{~N}$ (which is approximately the same with the result from 2 (b) as calculated from the Coulomb force);
(h) The acceleration of the electron is a $=\frac{v^{2}}{r}=9.07 \times 10^{22} \mathrm{~m} \mathrm{~s}^{-2}$;
(i) The kinetic energy is $E_{k}=m \frac{v^{2}}{2}=2.18 \times 10^{-18} \mathrm{~J}$;
(j) The potential energy is $E_{P}=-\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r}=-4.35 * 10^{-18} \mathrm{~J}$;
(k) The total energy is $\mathrm{E}_{\mathrm{k}}+\mathrm{E}_{\mathrm{P}}=$
$-2.17 * 10^{-18} \mathrm{~J}$ (the absolute value of potential energy is almost twice the kinetic energy. and this result is the same as $\mathrm{E}=-13.6 \mathrm{eV} \frac{1}{\mathrm{n}^{2}}$).

Since $r=a_{0} n^{2}$ and $E=-13.6 \mathrm{eV} \frac{1}{n^{2}}$,
the orbital radius and the total energy will both increase with increasing quantum number (the total energy is negative,
hence the smaller the absolute value, the larger the total energy).

