
Problem set 3

1. For electrons and protons, kinetic energy E =
m v2

2
=

p2

2 m
,

and de Broglie wavelength λ =
h

p
. Therefore we get λ =

h

2 m E
.

In[1]:= h =
6.626 × 10-34

1.6 × 10-19
; (* in units of eV.s *)

me = 0.511 × 106;

(* in units of eVc2. hence the rest energy of electrons is me*c2=

0.511*106 eV *)

mp = 938 × 106; (* in units of eVc2. hence the

rest energy of protons is mp*c2 = 938*106 eV *)

lambda[e_, m_] := h  2 m e ;

Show[Plot[lambda[e, me], {e, 0, me * 0.05}],

AxesLabel → {"Energy (eV)", "Wavelength (m)"},

PlotLabel → "de Broglie wavelength versus energy for electrons"]

Plot[lambda[e, mp], {e, 0, mp * 0.05},

AxesLabel → {"Energy (eV)", "Wavelength (m)"},

PlotLabel → "de Broglie wavelength versus energy for protons"]
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2. (a) Convert the unit of Planck' s constant into the SI base units.

J s = m  s2 kg m s = m2 kg s-1.

Since angular momentum is r⨯p, the SI base units for angular momentum is

m kg (m / s) = m2 kg s-1.

Hence it is obvious that Planck' s constant has the dimension of angular momentum.

(b) The average radius of a ground state

hydrogen atom (which is also the distance of the electron and

the proton for the ground state hydrogen atom) is r = 0.0529 nm.

The gravitational attraction between the electron and the proton is :

In[7]:= r = 0.0529;

g = 6.674 × 10-11; (* gravitational constant, in units of m3 kg-1 s-2 *)

me = 9.109 × 10-31; (* electron mass, in units of kg *)

mp = 1.673 × 10-27; (* proton mass, in units of kg *)

fgrav = g me mp  r 10-9

2

(* gravitational force, in units of N *)

Out[11]= 3.63447 × 10-47

The Coulomb attraction between the electron and the proton is :

In[12]:= k = 8.99 × 109; (* Coulomb constant, in units of N m2 C-2 *)

fcou = k 1.6 × 10-19

2
 r 10-9


2

(* Coulomb force, in units of N *)

Out[13]= 8.2241 × 10-8

Since gravitational force is 1039 order smaller than Coulomb force,

we can ignore the gravitational force.

3. (a) According to Bohr' s model,

the quantum number of the ground state of the hydrogen atom is n = 1.

(b) The orbital radius is r = a0 n2 = 0.0529 nm;

(c) The angular momentum is L = n ℏ = 1.055 * 10-34 J s;

(d) The linear moment is m v = L / r = 1.99 × 10-24 kg m s-1;

(e) The angular velocity is ω = v / r = 4.14 × 1016 s-1;

(f) The linear speed is v = L / (m r) = 2.19 × 106 m s-1;

(g) The force on the electron is m
v2

r
=

8.26 × 10-8 N (which is approximately the same with the

result from 2 (b) as calculated from the Coulomb force);

(h) The acceleration of the electron is a =
v2

r
= 9.07 × 1022 m s-2;

(i) The kinetic energy is Ek = m
v2

2
= 2.18 × 10-18 J;

(j) The potential energy is EP = -
1

4 π ϵ0

e2

r
= -4.35 * 10-18 J;

(k) The total energy is Ek + EP =

-2.17 * 10-18 J the absolute value of potential energy is almost twice

the kinetic energy. and this result is the same as E = -13.6 eV
1

n2
.

2     PS3_key.nb



Since r = a0 n2 and E = -13.6 eV
1

n2
,

the orbital radius and the total energy will both increase

with increasing quantum number (the total energy is negative,

hence the smaller the absolute value, the larger the total energy).
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